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ABSTRACT
Recommender systems have to handle a highly non-stationary

environment, due to users’ fast changing interests over time. Tradi-

tional solutions have to periodically rebuild their models, despite

high computational cost. But this still cannot empower them to

automatically adjust to abrupt changes in trends caused by timely

information. It is important to note that the changes of reward

distributions caused by a non-stationary environment can also be

context dependent. When the change is orthogonal to the given

context, previously maintained models should be reused for better

recommendation prediction.

In this work, we focus on contextual bandit algorithms for mak-

ing adaptive recommendations.We capitalize on the unique context-

dependent property of reward changes to conquer the challenging

non-stationary environment for model update. In particular, we

maintain a dynamic ensemble of contextual bandit models, where

each bandit model’s reward estimation quality is monitored re-

garding given context and possible environment changes. Only the

admissible models to the current environment will be used for rec-

ommendation. We provide a rigorous upper regret bound analysis

of our proposed algorithm. Extensive empirical evaluations on both

synthetic and three real-world datasets confirmed the algorithm’s

advantage against existing non-stationary solutions that simply

create new models whenever an environment change is detected.
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1 INTRODUCTION
The overwhelming volume of online content make personalized rec-

ommendation an indispensable component in modern information

service systems. Traditional solutions, including content-based fil-

tering [17, 26], collaborative filtering [6, 30], and hybrid approaches

[22], provide recommendations by leveraging users’ interests as

demonstrated in their past activities. However, in many practical

applications, such as news recommendation, both content popular-

ity and user interests evolve frequently over time, which make the

traditional offline learning approaches incompetent [18].

In recent years, multi-armed bandits, and more specifically con-

textual bandits, have become a referenced online learning solution

to deal with this dynamic nature of recommendations [1, 20, 27, 32,

33, 36, 37]. Contextual bandit solutions explore the unknowns by

collecting users’ feedback in real time to estimate the utility/reward

of new content with available side-information or context infor-

mation. They provide a principled way to find optimal trade-offs

between exploration and exploitation [3, 4], and have been success-

fully deployed in many important practical scenarios [20, 23].

However, most existing contextual bandit algorithms assume a

stationary environment [4, 20], where the expected reward on each

arm is drawn from an unknown yet fixed reward mapping function

based on the given context. This assumption, however, rarely holds

in many real-world applications, where the underlying reward map-

ping undergoes slow or abrupt changes due to various factors. For

example, Liu et al. [24] reported that readers’ preferences over news

articles shift with time and events in Google News. By analyzing

more than 20,000 twitter users over a four-months period, Abel

et al. [2] found that the interests of individual users into a topic

evolve differently over time. More importantly, the duration during

which users are interested in an event-like topic differs significantly

among each other. In other words, users’ interest change over time

but the change is unknown beforehand.

In this work, we focus on the setting where there are unknown

(to the learner) and abrupt changes in terms of user preferences.

Between consecutive changes, the reward distribution remains

stationary yet unknown, i.e., piecewise stationary. Existing bandit
algorithms address such a dynamic environment by either introduc-

ing a forgetting mechanism to downweight historical observations

[12, 15], or creating a bandit model for each newly detected station-

ary period [7, 14, 35, 38]. These strategies, nevertheless, failed to

recognize an important property of this non-stationary environ-

ment: the changes of user interests can be context dependent. Even
though one’s interest could change frequently, his/her preference

on a particular type of items might be stable over a longer period

of time. For example, in the news recommendation scenario men-

tioned above, users’ preferences over sports news may change with
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Figure 1: Real-time click-through-rate of four sample news
articles collected from Yahoo user click log dataset [20, 21].

sport seasons. However, at the same time, their preferences over

political news may stay stationary, independent of the sport season.

This phenomenon can be verified in Figure 1, where we collect

real-time click-through-rate (CTR) of four sample news articles

from the public Yahoo front-page user click log [20, 21] over a

week’s period. In the figure, each point denotes average CTR over

4000 log records. We can clearly observe the changes of user inter-

est on article 2 at time t3 and on article 3 at time t1, t2 and t4 in
this period. In the meanwhile, the CTR of article 1 and 4 remain

quite stable, i.e., the expected reward for recommending these two

articles remain unchanged. As a result, the experience recorded in

old models can still be used to make accurate reward estimations

for these two articles. On the contrary, strategies that discount

observations or abandon the “old” models must regain confidence

in their newly estimated parameters, which many lead to higher

regret due to redundant explorations. The key is thus to recognize

the reward change in a per-arm basis regarding the context.

To capitalize on such a unique property of the changing environ-

ment, we develop our contextual bandit algorithm that adapts its

arm selection and model update strategy with regard to users’ inter-

est changes in a context-dependent manner. Our solution consists

of a dynamic set of contextual bandit models, collectively referred to

as bandit experts, which are maintained to estimate the underlying

reward distribution. In the meanwhile, we monitor each bandit ex-

pert’s reward estimation quality regarding specific context through

another bandit model, referred to as bandit auditors. The auditor
predicts whether a bandit expert is ‘admissible’ to a specific arm

under the given context. At each round of interaction, an ensemble

of admissible bandit experts is created to estimate the reward of

each arm; and the arm with the highest upper confidence bound of

estimated reward will be selected. The acquired feedback is used to

update all admissible bandit experts for this chosen arm, and their

corresponding auditors. When no admissible bandit expert exists,

a new bandit expert will be created and added to the set before

evaluating the recommendation candidates.

We rigorously prove a sublinear upper regret bound of our pro-

posed algorithm, which guarantees that the number of sub-optimal

recommendations from our algorithm reduces rapidly over time.We

also show that if one fails to model the context dependent changes,

a much worse upper regret bound is inevitable. Extensive empirical

evaluations in one synthetic and three real-world datasets also con-

firmed the effectiveness of the proposed algorithm, especially in

handling the changing popularity and user preferences in practice.

2 RELATEDWORK
In this work, we focus on the stochastic setting of multi-armed

bandit problems [29]. Under this setting, various exploration strate-

gies have been proposed to conquer the exploit-explore dilemma,

such as upper confidence bound [3, 4, 20], epoch greedy [19] and

posterior sampling [9, 16]. However, most of these algorithms as-

sume a static environment, which is often violated in practice. A

number of bandit models hence have been proposed to deal with

non-stationary environments, and there are mainly two types of

environment changes studied: gradual changes and abrupt changes.

For gradual changes, Whittle [34] introduced the restless ban-

dits, where the states of arms can change in each step according

to a stochastic transition function. But this setting is notoriously

intractable [5, 25, 31].

Our work concerns abrupt changes of environment, where most

solutions only focus on context-free bandits. Hartland et al. [15],

and Garivier and Moulines [12] proposed a γ -Restart algorithm
and a discounted-UCB algorithm, in which a discount factor is

introduced to exponentially decay the effect of past observations.

Both algorithms need properly designed hyper-parameters, such

as the discount factor. Yu and Mannor [38] proposed a windowed

mean-shift detection algorithm to detect the changes in the envi-

ronment. They assume that at each iteration, the agent can not only

get feedback from the selected arms but also query a subset of arms

for additional observations, which would be very expensive in prac-

tice. Raj and Kalyani proposed discounted Thompson Sampling in

[28]. Recently Cao et al. [7] proposed a UCB based algorithm with

change detection module to detect changes and restart exploration

accordingly. Liu et al. [10] proposed to use cumulative sum and

Page-Hinkley test to detect sudden changes in the environment. A

sublinear upper regret bound is proved for a simplified Bernoulli

bandit environment with a strong detectability assumption. All

of the aforementioned solutions are non-contextual bandit solu-

tions, which are incapable to leverage the rich side information in

real-world applications.

Some recent works have realized the lack of contextual ban-

dits in a non-stationary environment, and extended corresponding

solutions. Hariri et al. [14] proposed a contextual Thompson sam-

pling algorithm with a change detection module, which involves

iteratively applying a combination of cumulative sum charts and

bootstrapping to capture potential changes. But due to its empirical

nature, no theoretical property is known about it. Wu et al. [35]

developed a two-level hierarchical bandit algorithm, which detects

and adapts to changes in the environment by maintaining a suite

of contextual bandit models. Regret analysis is provided under a

strong assumption about the change. However, to the best of our

knowledge, among the existing non-stationary bandit solutions, no

work utilizes the context dependent property of reward changes in

a piece-wise stationary environment. Hence, none of them is able

to exploit the existence of context dependent changes. Our algorithm
avoids the unnecessary penalties in regret incurred by indiscrim-

inately dismissing existing bandit models and tries to reuse the

existing models when judged ‘admissible.’



3 METHODOLOGY
In this section, we first introduce our notations and assumptions

about the non-stationary environment, then illustrate our proposed

algorithm, followed with a rigorous regret bound analysis.

3.1 Problem Setups
In a multi-armed bandit problem, a learner sequentially selects an

arm at from a candidate pool A = {a1,a2, ...,ak } to interact with

the environment, and receives the corresponding reward rat . The
goal of the learner is to maximize its accumulated reward over a

finite time horizonT . In a stochastic contextual bandit setting, each

candidate arm a is associated with a feature vector xa (assume

∥xa ∥2 ≤ 1 without loss of generality), referred as context. The

corresponding reward ra is determined by the context vector and

an underlying bandit parameter θ∗ (assume ∥θ∗∥2 ≤ 1 without loss

of generality). When applying to the recommendation scenario, the

bandit parameter θ∗ can be interpreted as the underlying param-

eter that controls users’ interests and xa is the available context

information about the candidate item a. Most existing contextual

bandit algorithms consider θ∗ as constant over time [1, 20], which

imposes a strong stationary assumption about the environment.

In this work, firstly, we relax this stationary assumption by allow-

ing abrupt changes in θ∗: the ground-truth θ∗ changes arbitrarily
at unknown time points, but remains constant between any two

consecutive change points [12, 14, 15] as follows:

r0, r1, · · ·, rtc
1
−1︸               ︷︷               ︸

governed by θ ∗
c
0

, rtc
1

, rtc
1
+1, · · ·, rtc

2
−1︸                        ︷︷                        ︸

governed by θ ∗
c
1

, · · · ,rtcΓT
, rtcΓT +1

, · · ·, rT︸                      ︷︷                      ︸
governed by θ ∗

cΓT

where the change points {tc }
cΓT
c=c1 and the corresponding bandit

parameters {θ∗c }
cΓT
c=c0 are unknown to the learner. We only assume

there are at most ΓT change points in the environment up to timeT ,
with ΓT ≪ T . To simplify the discussion of our developed algorithm,

a linear reward structure is postulated, but it can be readily extended

to more complicated structures, such as generalized linear models

[11]. Specifically, we have ra,t = xTaθ∗t + ηt , where ηt is Gaussian
noise drawn from N (0,σ 2).

Secondly, we capitalize on the unique property that in a con-

textual bandit setting the changes of reward distribution are context-

dependent. Thuswe categorize arms into two types, change-invariant
and change-sensitive, between any two stationary periods. For sta-

tionary periods i and j with their ground-truth bandit parametersθ∗i
and θ∗j , the arm that satisfies |xTaθ∗i − xTaθ∗j | ≤ ∆L (with ∆L > 0) is

referred as a change-invariant arm; otherwise as a change-sensitive

arm. ∆L is a parameter to introduce flexibility and accommodate

stochastic noise, which relaxes the requirement that the change

has to be completely orthogonal to the context vector of a change-

invariant arm. This makes our problem setting more general than

those in [10, 38]. An illustration of these two types of arms is pro-

vided in Figure 2: when the ground-truth bandit parameter changes

from θ∗c to θ∗c+1, although there are change-sensitive arms, for ex-
ample arm a1, whose expected reward changes dramatically, there

are also change-invariant arms, for example arm a2, whose context
vectors are orthogonal to the change, i.e., xTa (θ∗c − θ∗c+1) = 0 < ∆L ,
so that their expected reward does not change significantly even

after the environment changes. For example, mapping it back to our

θ∗
tc

θ∗
tc+1

θ∗
tc

θ∗
tc+1

θ∗
tc

θ∗
tc+1

θ∗
tc+2 t

Change-sensi�ve arm Change-invariant arm

∆E[ra2
] = 0

∆E[ra1
]

{
a1 a2

E[ra] = xT
aθ

∗ {xa1
, xa2

, ..., xaK
}

xa1

xa2

Figure 2: An illustrative example of context-dependent
changes in a piecewise stationary environment. A linear re-
ward assumption is postulated to simplify the illustration.

previous news recommendation example, if the reward change in a

user was caused by the change of sports season, the sports news

and political news could be considered as the change-sensitive and

change-invariant arms respectively for this user.

To differentiate the actual reward change from stochastic noise,

we impose the following assumption about the non-stationary en-

vironment, which characterizes the detectability of reward changes

between the stationary period i and j,

Assumption 1. Among the change-sensitive arms between sta-
tionary period i and j, there are at least ρ portion of them satisfying
|xTaθ∗i − xTaθ∗j | > ∆H .

This assumption requires that between any two stationary peri-

ods, there are a number of change-sensitive arms undergo perceiv-

able reward changes, which differentiate these two periods.

3.2 A Dynamic Ensemble of Bandits
In the non-stationary environment specified above, where the

changes of users’ interests occasionally happen at unknown time

points, new bandit models should be rebuilt in accordance with

the changes of underlying user interest. In addition, the possible

existence of change-invariant arms urges us to reuse the bandit

models estimated for those earlier periods, so that more accurate

reward estimation on such arms can be achieved sooner so as to

obtain reduced regret in a new stationary period.

In order to achieve these goals, three challenges have to be ad-

dressed: 1) as the changes of environment are unknown to the

learner, how to detect the potential change of user interests and

create new bandit models to account for the change-sensitive arms

in a new environment? 2) as the reward changes in each arm are

context-dependent, how to recognize the change-invariant arms at

current period such that experience from old models can be fully

utilized? and 3) which arm to choose given multiple bandit models

might exist at the same time? To avoid any potential ambiguity

in our later discussions, we refer to the contextual bandit models

created for reward estimation as bandit experts.
We address the first two challenges by creating a companion

bandit model for each bandit expert to monitor its reward estima-

tion quality. We refer to this companion bandit model as a bandit
auditor. In a nutshell, a bandit expert, who works with the context

features and reward collected from its chosen arms, is responsible



for reward estimation regarding its corresponding environment.

Its companion bandit auditor works with the context features of

the expert’s choices and the observed prediction errors from the

bandit expert. The auditor is responsible for assessing the expert’s

prediction accuracy. At each round, every bandit auditor evaluates

whether the monitored bandit expert is admissible to make an ac-

curate reward estimation for a given arm, with respect to potential

environment changes. A bandit expert being identified as admissi-

ble to a particular arm indicates with a high probability that, either

1) no change has happened since the creation of this bandit expert,

or 2) the environment has changed but the arm is change-invariant

between this bandit expert’s estimated reward distribution and the

current period’s underlying reward distribution. This addresses

the second challenge. When no admissible bandit expert exists for

a given arm, it is thus highly likely to be a change-sensitive arm

in a new environment, and a new bandit expert is needed. This

addresses the first challenge.

To address the third challenge, at each round of interaction,

following the principle of optimism in the face of uncertainty [1,

20], an arm is chosen by the upper confidence bound of reward

estimation based on an ensemble of all its admissible bandit experts.

The acquired feedback for the selected arm/item is used to update

all corresponding bandit experts and their auditors. We name the

resulting bandit algorithm as Dynamic Ensemble of Bandit Experts,

or DenBand in short. We describe DenBand in Algorithm 1
1
and

discuss the key components of it in details as follows.

Bandit Expert. Define tm as the time when bandit expert m is

created. Each bandit expertm maintains an estimated bandit pa-

rameter
ˆθt (m) for the stationary period at tm . Define Iθ

t (m) as a

set of timestamps when observation (xai , rai ,i ) is assigned to the

bandit expertm for model update till time t (in line 24-25 of Algo-

rithm 1). rai ,i is the observed reward on arm ai at time i . Because

of our linear reward structure,
ˆθt (m) can be readily estimated by

ˆθt (m) = A−1
t (m)bt (m), in which At (m) = λI +

∑
i ∈Iθt (m)

xai x
T
ai , I

is a d × d identity matrix, λ is the regularization coefficient in the

least square regression, and bt (m) =
∑
i ∈Iθt (m)

xai rai ,i .
Bandit Auditor. Denote the reward estimation error of bandit

expertm on arm a at time t as ea,t (m) = r̂a,t (m) − ra,t , in which

r̂a,t (m) = xTa ˆθt (m). We have E[ea,t (m)] = xTa ( ˆθt (m) − θ∗t ), which
is referred as ‘badness’ of bandit expertm on arm a at time t and
leads to a linear structure for badness estimation. We create a new

bandit model with the target parameter for estimation as β∗t (m) =
ˆθt (m) − θ∗t , and refer to it as the bandit auditor of bandit expertm.

We maintain and update the bandit auditors in a similar manner

as that in bandit experts. Denote I
β
t (m) as a set of timestamps

when observation

(
xai , eai ,i (m)

)
is assigned to the bandit auditor

for bandit expertm up to time t (line 21-23 in Algorithm 1). The

bandit auditor estimates β∗t (m) by ˆβt (m) = C−1
t (m)dt (m), in which

Ct (m) = λI+
∑
i ∈Iβ

t (m)
xai x

T
ai and dt (m) =

∑
i ∈Iβ

t (m)
xai eai ,i (m).

Intuitively, the bandit auditor for expertm evaluateswhether an arm

a at time t is change-invariant to the reward distributions specified

by θ∗t and θ∗tm . The definition of badness requires us to update

1
Open source implementation of DenBand can be found in https://github.com/

huazhengwang/BanditLib

Algorithm 1 Dynamic Ensemble of Bandit Experts (DenBand)

1: Inputs: α ∈ R+, λ > 0, δ1, δ2 ∈ (0, 1), τ , ∆L
2: Initialize: Create and initialize bandit expertm: A1(m) = λI, b1(m) =

0, ˆθ1(m) = 0, and its auditor: C1(m) = λI, d1(m) = 0, ˆβ1(m) = 0.
Initialize the bandit expert set M1 = {m }

3: for t = 1 to T do
4: for a ∈ At do
5: Create an admissible model set for arm a: Ma

t = ∅

6: for m ∈ Mt do
7: êa,t (m) = xTa ˆβt (m)

8: Compute Bβa,t (m) and Bθa,t (m) by Eq (1) and (2)

9: if |êa,t (m) | < Bθa,t (m) + Bβa,t (m) + ∆L then
10: Addm into Ma

t
11: end if
12: end for
13: if |Ma

t | = 0 then
14: Create and initialize a new bandit expertm and its auditor

as in Line 2; Addm to Ma
t and Mt

15: end if
16: Compute UCBa,t of arm a with bandit experts in Ma

t
17: end for
18: Select an arm by at = argmaxa∈A UCBa,t
19: Observe reward rat ,t
20: for m ∈ M

at
t do

21: r̂at ,t (m) = xTat
ˆθt (m), eat ,t (m) = r̂at ,t (m) − rat ,t

22: Update {eai ,i }i∈Iβt (m)
according to

ˆθt (m), and keep the size

of I
β
t (m) to τ

23: Ct+1(m) = Ct (m) + xat x
T
at , dt+1(m) =

∑
i∈Iβt (m)

xai eai ,i

24: if m ∈ M
at
t and |r̂at ,t (m) − rat ,t | ≤ Bθat ,t (m) + ∆L + ϵ

then
25: At+1(m) = At (m) + xat x

T
at , bt+1(m) = bt (m) + xat rat ,t

26: else
27: At+1(m) = At (m), bt+1(m) = bt (m)

28: end if
29:

ˆθt+1(m) = At+1(m)−1bt+1(m)

30:
ˆβt+1(m) = Ct+1(m)−1dt+1(m)

31: end for
32: end for

ea,t (m) of all observations in I
β
t (m) whenever ˆθt (m) is updated

or θ∗t is changed. But as the environment change is unknown to

the learner, this update is infeasible. We decide to only accumulate

the most recent τ observations in I
β
t (m) for auditor update, and

prove this still provides us a high probability bound of each bandit

auditor’s badness estimation in our regret analysis,

|êa,t (m) − E[ea,t (m)]| ≤ B
β
a,t (m) (1)

where B
β
a,t (m) =

(
σ 2

√
d ln(

λ+ |Iβ
t (m) |

λδ2
) +

√
λ
)
∥xa ∥C−1

t (m).

Bandit Expert Selection. Based on Eq (1) and our badness def-

inition, we have |êa,t (m)| ≤ E[ea,t (m)] + B
β
a,t (m) ≤ |xTa ˆθt (m) −

xTaθ∗tm |+ |xTaθ∗tm −xTaθ∗t |+B
β
a,t (m). The first part on the right-hand

side of this inequality is the reward estimation quality of bandit

expertm, which can be bounded by,

|xa ˆθt (m) − xaθ∗tm | ≤ Bθa,t (m,a) (2)

https://github.com/huazhengwang/BanditLib
https://github.com/huazhengwang/BanditLib


where Bθa,t (m,a) =
(
3σ 2

√
d ln(

λ+ |Iθt (m) |

λδ1
) +

√
λ
)
∥xa ∥A−1

t (m). We

should note that this bound is different from those for classical

linear bandit algorithms (e.g., [1]), since it also has to account for

the possible contamination from change-invariant arms (as we do

not restrict ∆L to zero). The second part on the right-hand side

can be bounded by ∆L , if no change has happened since tm or

the arm a is change-invariant between tm and t . As a result, the

condition |êa,t (m)| < Bθa,t (m)+B
β
a,t (m)+∆L in line 9 of Algorithm

1 determines if the bandit expertm is admissible to arm a at time

t (supported by Lemma 1 and 2 in Section 3.3). When there is no

admissible bandit expert for arm a, a new bandit expert needs to

be created to account for the detected change of environment (line

13-15 in Algorithm 1).

Arm Selection. We appeal to the Upper Confidence Bound (UCB)

principle [1, 20] to select an arm from the candidate arm pool

(line 18 of Algorithm 1). With the above bandit expert selection

strategy, for arm a at time t , we might collect a set of admissible

bandit experts Ma
t , and each admissible bandit expert m gives

us an upper confidence bound of reward estimation for arm a:

UCBa,t (m) = xTa ˆθt (m) + Bθa,t (m). Therefore, we need to integrate

UCBa,t (m) from multiple bandit experts (line 16 of Algorithm 1).

We propose two strategies for this purpose, each of which has its

own advantages; but both of them lead to the same upper regret

bound (proved in Theorem 2 of Section 3.3).

Option 1: Average ensemble. For each arm, as in principle ev-

ery admissible bandit expert is ‘legitimate’ to give a reward pre-

diction for this arm, we compute an average upper confidence

bound of reward based on all admissible expert models: UCBa,t =
1

|Ma
t |

∑
m∈Ma

t
UCBa,t (m). This ensemble helps reduce variance in

reward estimation among the admissible bandit experts, but might

be disturbed by some least qualified bandit experts.

Option 2: Lower confidence bound of badness. Although ev-

ery admissible bandit expert is guaranteed to have small enough

badness to make an accurate reward prediction on the chosen

arm, the uncertainty of their auditors’ badness estimation may

differ, which introduces another level of trade-off between exploita-

tion and exploration in bandit expert selection. By applying the

Lower Confidence Bound (LCB) principle (as we want to mini-

mize the badness of chosen bandit experts), we select a bandit

expert from Ma
t by the LCB of its auditor’s estimated badness:

m̃a,t = argminm∈Ma
t

(
|êa,t (m)| −B

β
a,t (m)

)
, and compute the UCB

of arm a using the selected bandit expert m̃a,t .

Model Update. Once the feedback (xat , rat ) is obtained from the

environment on the selected arm at , we update the bandit experts
and auditors in this arm’s admissible model set (line 20-31 in Algo-

rithm 1). In particular, we compare the acquired feedback against

each bandit expert’s estimation (line 24) to decide whether we

should update the bandit expert to improve its reward estimation

or the bandit auditor to improve its badness estimation. This de-

cision comes from two factors that cause the observed reward

estimation error: 1) large noise from the environment; 2) the arm is

actually not change-invariant. Large noise may happen, but with a

very small probability, as it follows a Gaussian distribution. Define

ϵ =
√
2σerf−1(δ1 − 1), in which σ is the standard deviation of the

Gaussian noise in reward feedback, and erf(·) is the Gauss error

function. Violating the condition |r̂a,t (m)−ra,t | ≤ Bθa,t (m)+∆L+ϵ
suggests that the chosen arm might not be change-invariant, such

that the bandit expert should not be updated but the bandit auditor

should be. This selective update strategy helps reduce erroneous

observations in both bandit experts and auditors.

3.3 Regret Analysis
The accumulated (pseudo) regret of a bandit algorithm up to timeT

is formally defined as R(T ) =
∑T
t=1(E[ra∗t ,t ]−E[rat ,t ]), in which a∗t

is the best arm according to the oracle at time t , and at is the arm
selected by the algorithm to be evaluated. We first provide high

probability bounds of bandit experts’ reward estimation and bandit

auditor’s badness estimation in the following theorem.

Theorem 1 (Confidence Bounds). We define Smin as the length
of the shortest stationary period up to time T and tc (m) as the first
change point in the environment after bandit expert m is created.
When Assumption 1 is satisfied with ∆H > 4

√
λ + ∆L and ∆L ≤

σ 2

√
dλ ln λ+T

λδ
1

T , and 1 < τ ≤ Smin
σ 2

√
dλ ln λ+T

λδ
1

2ρT , at time t for any δ1 ∈

(0, 1),δ2 ∈ (0, 1) and δ3 = 1−(1−δ1)
[
(1−δ2)(1−δ1)ρ

]
max{t−tc (m),0} ,

with a probability at least 1− δ3, for any arm a all the bandit experts
in Algorithm 1 satisfy,

|xTa ˆθt (m) − xTaθ
∗
tm | ≤ Bθa,t (m,a) (3)

If there is no environment change in the past τ iterations, with a
probability at least 1 − δ2, all bandit auditors at time t satisfy,

|xTa ˆβt (m) − xTaβ
∗
t | ≤ B

β
a,t (m,a) (4)

And with a probability at least 1 − δ3, all the selected bandit experts
in Ma

t for arm a satisfy,

|xTa ˆθt (m) − xTaθ
∗
t | ≤ ∆L + B

θ
a,t (m) (5)

This theorem specifies the threshold of minimum reward change

for change-sensitive arms, i.e., ∆H , which decides whether a change

is detectable by our algorithm. We can further relax the threshold to

2Bθa,t (m)+ 2B
β
a,t (m)+∆L , which is shrinking over time and related

to the current model uncertainties of the bandit expert and audi-

tor. This would allow us to recognize more subtle reward changes

across different stationary periods so as to improve the model esti-

mation quality on the fly. On the other hand, ∆L is the threshold

deciding whether an arm is change-invariant with respect to two

stationary periods. It is thus the resolution of our bandit experts in

recognizing the ground-truth bandit parameters of their designated

periods. Note, ∆L is a parameter of the environment, rather than a

parameter of our model. The parameter τ determines the number

of most recent observations used for estimating the bandit auditors.

Although a larger τ naturally leads to better badness estimation

quality in the auditors, it cannot be arbitrarily large as it brings

in out-of-date observations to the auditors. Theorem 1 imposes an

upper bound of τ to guide practical use of our algorithm. Proofs

this this theorem can be found in Appendix 7.1.

In the following two lemmas, we bound the probability of false

negative and false positive selection of bandit experts, which proves

the validity of our designed bandit expert selection strategy.



Lemma 1. A false negative selection happens when the bandit
expertm is not selected in its designated period or for the truly change-
invariant arms to it in other periods. Denote the probability of a false
negative selection as PFN. At time t , we have PFN = P

(
|êa,t (m)| >

Bθa,t (m) + B
β
a,t (m) + ∆L

�� |xTaθ∗t − xTaθ∗tm | ≤ ∆L
)
≤ (1 − δ2)(1 − δ3),

in which δ2 and δ3 are defined in Theorem 1.

Lemma 2. A false positive selection happens when the environment
has changed and the current arm is change-sensitive to a particular
bandit expertm, but the bandit expert is mistakenly selected. Denote
the probability of a false negative selection as PFP. When Assumption
1 holds and ∆H > 4

√
λ + ∆L , we have at time t > tc (m), PFP =

P
(
|êa,t (m)| ≤ Bθa,t (m) + B

β
a,t (m) + ∆L

�� |xTaθ∗t − xTaθ∗tm | > ∆L
)
≤

1 −
(
(1 − δ1)(1 − δ2)ρ

)t−tc (m), in which δ1 and δ2 are defined in
Theorem 1.

Intuitively, a false negative selection of bandit experts happens

when both the reward and badness estimations on a change-invariant

arm exceed their confidence bounds; and a false positive selection

happens when a change-sensitive arm undergoes substantial re-

ward change but both the expert’s reward estimation and the audi-

tor’s badness estimation still stay within their confidence bounds.

Putting all these analyses together, we have the following regret

bound for our proposed algorithm.

Theorem 2 (Regret bound of DenBand). Under the same con-
dition as stated in Theorem 1, and (δ2+δ3−δ2δ3) ≤ 1

2Smax
, using any

bandit expert in Ma
t for UCB-based arm selection guarantees that

with a probability at least (1 − δ3)(1 − δ2) the expected accumulated
regret of DenBand up to time T can be bounded as,

R(T ) ≤2ΓT
(
3σ 2

√
d ln

λ +UT
λδ1

+
√
λ
)√

Smaxd ln(λ +
Smax

d
)

+ (
1

ρ
+ 2)σ 2

√
dλ ln

λ +T
λδ1

where Smax is the length of the longest stationary period up to time
T , ΓT is the total number of environment changes till T , and UT =
max{|Iθ

T (m)|}m∈MT .

UT is the maximum number of updates taken among any of the

bandit experts; and it is clearly smaller than T . Hence the accu-

mulated regret is in the order of O(ΓT
√
Smax lnT ln Smax), which is

arguably a very tight upper regret bound without any further as-

sumption about the environment. Detailed proof and interpretation

of Theorem 2 can be found in Appendix 7.2.

Theorem 2 provides a general upper regret bound of our Den-

Band in the order of O(ΓT
√
Smax lnT ln Smax). To better interpret

this upper regret bound under different circumstances, we consider

the following two special environment cases. Case 1: When the

changes are evenly (or almost evenly) distributed, i.e., Smax = S =
T
ΓT
, the resulting regret bound can be rewritten as O(

√
ΓTT lnT ),

which matches the general lower regret bound in an abruptly chang-

ing environment proved in [12] without further assumptions about

the environment. Case 2: When the distribution of changes are

highly unbalanced such that there is a single very long stationary

period and many very short stationary periods, by denoting the

short periods with a superscript ‘s’, the final upper regret bound can

be rewritten asO(
√
Smax lnT ln Smax+ΓT

√
Ss
max

lnT ln Ss
max

)where

Ss
max

≪ Smax. For example, when Ss
max

≪
Smax

Γ2T
, the regret can be

further upper bounded by O(
√
Smax lnT ln Smax), which matches

and is better than the upper regret bound of running a single con-

textual bandit over the whole period (as Smax < T ).
Our regret analysis in those two special cases supports the va-

lidity of DenBand, and we can further generalize our analysis of

it under other reward assumptions. In particular, our theoretical

analysis supports that any contextual bandit algorithm can be used

as a bandit expert in DenBand, as long as its reward estimation error

is bounded with a high probability, which corresponds to Bθt (m,a)
in Eq (3). The overall regret of DenBand will only be a factor of the

actual number of changes in the environment, which is arguably

inevitable without further assumptions about the environment.

4 EXPERIMENTS
We tested DenBand on a comprehensive set of evaluation datasets,

which include a synthetic dataset and three real-world recommen-

dation datasets. On all datasets, we compared against the following

bandit baselines: LinUCB [20], a reference stationary linear contex-

tual bandit algorithm; dLinUCB [35], AdTS [14], WMDUCB1 [38],

and Meta-Bandit [15], which are state-of-the-art bandit algorithms

for piece-wise stationary environment. For DenBand, we tested two

variants of it: DenBand-lcb, which uses lower confidence bound of

badness to select a bandit expert, and DenBand-avg, which takes

the average reward UCBs from all admissible bandit experts.

4.1 Experiments on Synthetic Dataset
• Simulation Settings. In simulation, we generate a size-K (K =
1000) arm pool A, in which each arm a is associated with a d-

dimensional (d = 10) feature vector xa ∈ Rd with ∥xa ∥2 ≤ 1.

Similarly, we create a set of ground-truth bandit parameters θ∗ ∈

Rd with ∥θ∗∥2 ≤ 1, which are not disclosed to the learners. The

standard deviation of Gaussian noise σ on the reward is set to 0.05

by default. To simulate an abruptly changing environment, after

every S rounds, we randomize θ∗ with respect to the constraint that
at least ρ portion of arms in A satisfy |xTaθ∗tcj − xTaθ∗tcj+1 | > ∆H .

And by default, we set S to 200, ∆H to 0.7, and ρ to 0.2.

• Empirical Regret Comparisons. Under this simulation setting,

we execute all algorithms 1000 iterations and report their accumu-

lated regret in Figure 3 (a). Because LinUCB imposes a stationary

assumption about the environment, it suffers almost linearly in-

creasing regret after the first change point. Both AdTS and dLinUCB

can react to the environment changes, but they are slow in doing

so and thus accumulate increasing regret. Both of our proposed al-

gorithms, DenBand-lcb and DenBand-avg, can quickly identify the

changes and create corresponding bandit experts to capture the new

reward distributions. The solid and dashed vertical lines in Figure

3 (a) show the actual and detected change points by DenBand-lcb

respectively. We can clearly notice that DenBand can almost im-

mediately respond to the changes in the environment. To improve

visibility of Figure 3 (a), WMDUCB and Meta-Bandit are excluded.

In addition, we also include two oracle algorithms in Figure 3 (a).

One is to start a new bandit expert at each change point and only

uses it in this period, named as OracleRestart. The other, named

as OracleReuse, maintains one bandit expert for each stationary
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Figure 3: Performance comparison on a synthetic dataset.

Table 1: Accumulated regret with different settings of the non-stationary environment.

(σ , ∆H , S , ρ) (0.05, 0.7, 200, 0.8) (0.1, 0.7, 200, 0.8) (0.05, 0.7, 400, 0.8) (0.05, 0.5, 200, 0.8) (0.05, 0.5, 200, 0.5) (0.05, 0.5, 200, 0.2)

DenBand-lcb 22.48 ± 3.12 36.68 ± 6.64 16.55 ± 1.48 23.24 ± 3.01 18.96 ± 1.96 22.45 ± 2.32

DenBand-avg 25.54 ± 3.88 33.87 ± 4.13 13.08 ± 2.12 23.51 ± 2.55 20.40 ± 2.06 19.87 ± 1.85
dLinUCB 35.12 ± 2.20 54.58± 3.56 22.33 ± 2.83 35.72 ± 2.05 34.45 ± 2.83 36.65 ± 2.10

AdTS 65.16± 20.30 67.43 ± 21.49 38.61 ± 5.08 70.74 ± 26.60 58.59 ± 14.13 52.45 ± 14.21

LinUCB 253.22 ± 7.12 263.14 ± 11.76 257.50 ± 8.07 216.60 ± 11.32 206.29 ± 15.71 164.68 ± 8.98

WMDUCB1 519.73 ± 21.53 528.48 ± 23.63 473.13 ± 43.29 484.23 ± 17.73 404.17 ± 10.95 372.30 ± 9.68

Meta-Bandit 585.70 ± 3.72 585.97 ± 4.62 499.83 ± 5.14 454.56 ± 4.29 412.30 ± 2.68 362.96 ± 2.17

Table 2: Accumulated regret with different hyperparameter configurations.

(τ , ∆L ) (30, 0.0 ) (50, 0.0 ) (80, 0.0) (100, 0.0) (100, 0.025) (100, 0.05) (100, 0.1) (100, 0.15)

DenBand-lcb 24.36 ± 4.23 22.48 ± 3.12 19.33 ± 2.65 18.36 ± 3.27 19.27 ± 1.74 19.58 ± 1.38 21.08 ± 3.17 23.75 ± 5.96

DenBand-avg 25.73 ± 1.53 21.19 ± 3.29 18.87± 2.59 19.04 ± 1.65 19.52 ± 2.10 22.78 ± 2.19 26.84 ± 4.03 31.81 ± 6.08

dLinUCB 35.08 ± 2.59 35.12 ± 2.20 40.28 ± 2.52 42.86 ± 2.23 - - - -

AdTS 94.90 ± 13.08 65.16 ± 20.30 123.05 ± 14.94 91.31 ± 20.08 - - - -

period, and uses all ground-truth reusable experts for reward esti-

mation in change-invariant arms. DenBand performs very closely

to such optimal algorithms, although it does not get access to the

ground-truth environment changes. Figure 3 (b) shows the parame-

ter estimation quality (i.e., the L2 difference between the estimated

parameter and the ground truth parameter) for four dynamically

created bandit experts in DenBand-lcb. For comparison, we also

include the estimation quality of experts from the OracleReuse

algorithm. The good estimation quality of each bandit expert in

DenBand further verifies our conclusion in Theorem 1 about the

confidence bound of admissible bandit experts’ estimation quality.

• Sensitivity to Environment Settings. According to our regret

analysis, the performance of DenBand depends on the environ-

ment settings: including standard deviation σ in the Gaussian noise,

length S of stationary period, proportion ρ of change-sensitive

arms, and magnitude ∆H of reward change. We varied them in

simulation to investigate their influence on the algorithms. We ran

all algorithms for 10 times and reported the mean and standard

derivation of obtained accumulated regret in Table 1. DenBand

consistently achieved the best performance against all baselines in

all environment settings. As expected, a larger noise level σ leads

to worse regret in almost all algorithms. Since T is fixed in our

simulation, a smaller S leads to a larger ΓT , which linearly scales

DenBand’s regret. When ∆H becomes smaller, the regret of the two

variants of DenBand and AdTS are further reduced. This is because

once ∆H satisfies the requirement in Theorem 1, the change can be

confidently detected; and in the meanwhile, because of a smaller

∆H , the added regret from using a false-positive bandit expert be-

comes smaller. Lastly, ρ does not seriously affect the performance

of DenBand, which indicates that the algorithm is robust to ρ as

long as Assumption 1 is satisfied.

• Sensitivity to Hyper-Parameters. To verify the robustness of

our proposed algorithm, we studied the effect of two important

hyper-parameters in Table 2: τ , whic determines the number of

most recent observations used in bandit auditors, and ∆L , which
introduces flexibility and accounts for the existence of change-

invariant arms with infinitesimal reward shift. As a comparison,

we also studied the effect of τ on dLinUCB and AdTS, which also

use a sliding window for change detection. From Table 2 we can

find that both variants of DenBand are robust to its parameter τ
as long as it falls into the required range. This result verified our

theoretical analysis about the role of τ in Theorem 1, which defines

an upper and lower bound of τ for the proved confidence bound.

On the contrary, the baselines, especially AdTS, are very sensitive

to the setting of τ . For the parameter ∆L , DenBand-lcb is very

robust to it, but DenBand-avg is not. This can be explained from

two perspectives: 1). As ∆L accounts for the existence of change-

invariant arms with infinitesimal reward shift, it should be upper

bounded as required in Theorem 1. 2). When ∆L is set too large,

inadmissible bandit experts may be mistakenly selected. In this

case, DenBand-avg suffers from a contaminated average ensemble

of bandit experts in reward prediction. DenBand-lcb reduces the

risk by selecting a bandit expert by its lower confidence bound of

estimated badness.
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Figure 4: Effect of hyper-parameters on DenBand on two real-world datasets

4.2 Experiments on Real-World Datasets
• Datasets. We tested all algorithms on the following three real-

world recommendation datasets.

The first dataset is a large collection of Yahoo frontpage recom-

mendation log, made available by the Yahoo Webscope program

[20]. It contains 45,811,883 user visits to Yahoo Today Module in

a ten-day period in May 2009. Unbiased offline evaluation is per-

formed on this dataset following the offline evaluation protocol

used in [20, 21].

The second dataset is a user click log collected from the Snapchat

lens recommendation platform over a one-week period. This dataset

contains hundred millions of anonymous observations related to

495 unique lenses and more than five hundred thousand randomly

selected users. Each observation contains an anonymous user id,

a lens id which is recommended by the logging policy, and cor-

responding user actions on this lens. Each lens is associated with

an 8-dimensional feature vector constructed by historical click

statistics. The sharing-related actions on items are considered as

positive user click feedback. Due to the sparsity of observations,

users are grouped into 22 groups according to their demographic

information, and estimate one bandit model in each user group.

The same offline evaluation protocol is used here as in the Yahoo

news recommendation dataset.

The third data is extracted from the music streaming service

Last.fm, which is made available on the HetRec 2011 workshop
2
.

This dataset contains 1892 users and 17632 items (artists). We treat

the ‘listened artists’ in each user as positive feedback. Following

the settings in [8, 32, 36], we pre-processed the dataset in order to

fit them into a contextual bandit setting. And we followed [15, 35]

to simulate a non-stationary environment: we ordered observations

chronologically inside each user, and built a single hybrid user by

merging different users. Hence, the boundary between two consec-

utive batches of observations from two original users is treated as

the preference change of the hybrid user.

• Sensitivity of Hyper-Parameters. To test the proposed algo-

rithms’ sensitivity to hyper-parameters and identify the best hyper-

parameter setting, we perform parameter tuning using one day’s

data from yahoo dataset and two days’ data from Snapchat dataset.

We vary ∆L and τ , and report the relative performance improve-

ment compared with LinUCB in Figure 4. From Figure 4 (a) and

(c), we notice that DenBand-lcb is very robust to the setting of ∆L ,
while the performance of DenBand-avg can be bad when ∆L is too

2
http://grouplens.org/datasets/hetrec-2011

large. As discussed in our study of hyper-parameters in Section 4.1,

the reason is that for a larger ∆L , DenBand is more likely to include

false positive models as admissible bandit experts. In this case, the

reward estimation quality may become inaccurate in DenBand-avg,

which evenly trust all admissible experts’ output. As for τ , in Figure

4 (b) and (d) we observed that AdTS is very sensitive to the choice

of τ , while both variants of DenBand are quite robust to it as long

as it is within a reasonable range.

•RecommendationQuality In Figure 5 (a), we report normalized

Click-Through Rate (CTR) from different algorithms based on the

corresponding logged random strategy’s CTR on the Yahoo dataset.

We set τ to 2,000 and ∆L to 0.3 based on the hyper-parameter tuning

results. From Figure 5 (a), we can find that DenBand-lcb achieves

significant improvement compared with all baselines, especially

at the beginning of the testing period. WMDUCB1 performs the

worst as it cannot utilize any available context information. We

also looked into the detected change points by DenBand-lcb, and

found that it detected 25 changes in total, and we plotted 12 of

them in Figure 5 (a) using vertical lines (to increase visibility of

the figure). We can find close correspondence between its detected

change points and its performance improvement.

Using the same evaluation protocol, we report the CTR ratio be-

tween different algorithms and the logging policy on Snap dataset

in Figure 5 (b). We set τ to 500 and ∆L to 0.1. On this dataset, the

context-free algorithms perform significantly worse than the con-

textual ones, so that we excluded them from the comparisons. The

results show that our algorithms achieve a 29% - 31% improvement

comparing to the logging policy, and a 3.1% improvement against

LinUCB in a per-user basis. Comparing to AdTS, although our

proposed algorithm performs similarly at the beginning, it caught

up very quickly later. We plot the detected change points for two

largest groups of users (users in the same group share the same set

of bandit experts) in Figure 5 (b) using vertical lines of different

colors, which well correlate with performance improvement during

the adaptive recommendation process.

The ratio between reward from the bandit algorithms and that

from a random selection policy on LastFM dataset is reported in

Figure 5 (c), where ∆L is set to 0.1 and τ is set to 300. From this result,

we can see that DenBand, especially DenBand-avg outperform all

the baselines. LinUCB performs the worst as it failed to capture

the non-stationarity of the environment. Since the distribution of

items is highly skewed [8], the context-free bandits perform very

poorly on this dataset. We therefore decide to exclude them from

comparison in the figure.
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Figure 5: Normalized CTR comparison on three real-world datasets.
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Figure 6: Residual ratio on Snapchat dataset

•Reward estimation quality and qualitative study. In order to
investigate the effectiveness of DenBand in reward estimation and

illustrate the source of its performance improvement, we looked

into its reward prediction error on the selected items on Snapchat

dataset. In Figure 6, we normalize the accumulated residuals (i.e.,

reward prediction error) from different algorithms by that from Lin-

UCB. It shows that both variants of DenBand have smaller reward

estimation error on the selected items. In addition, we illustrate

the detected change points for the two largest user groups using

vertical lines. The detected changes correlate well with the turning

points of residual ratio in DenBand. For example, at the first and

last detected change points, the residual ratio is increasing, which

indicates that the old bandit model is becoming bad; and thus new

bandit experts are created to account for the new environment.

To reveal how DenBand recognizes the changes of users’ in-

terests in a context-dependent manner, we looked into the high

reward items, change-invariant items, and change-sensitive items

according to our sequentially created bandit experts and their cor-

responding auditors on the LastFM dataset. For each bandit expert

and auditor pair, we used the learnt models in the bandit expert to

get the top 500 high reward items, and used its auditor to get the

top 500 change-invariant items and top 500 change-sensitive items

separately. As each item is associated with some short text descrip-

tions provided by the users, we then generated word clouds for

each group of those selected items to summarize the learnt bandit

models in Figure 7. It is interesting to find that the change-invariant

items tend to be related with geographical regions. For example,

the change-invariant items in group 1 are mostly about Brazilian

music, and those in group 2 are related to Japanese music. The

change-sensitive items are mostly related to those more common

genres of music. And the high reward items are a mix of these two

types. Hence recognizing the changing and stable users’ interest is

essential in making satisfactory recommendations.

Figure 7:Word cloud visualization of two bandit experts and
their auditors on LastFM. In each of the word cloud groups,
the left one shows the tags from high reward items selected
by the bandit expert; the upper right one shows tags from
change-invariant items, and the lower right one shows tags
collected from change-sensitive items according to the ban-
dit auditor, respectively.

5 CONCLUSIONS & FUTUREWORK
We studied contextual bandits for adaptive recommendation in a

piece-wise stationary environment. Capitalizing on the context-

dependent property of environment changes, bandit models are

dynamically ensembled and reused to conquer the non-stationary

environment. Rigorous regret analysis validates the convergence of

the proposed solution, and extensive empirical evaluations on simu-

lation and three large real-world datasets verified the effectiveness

and reliability of the proposed algorithm.

In this work, we treat bandit learners as independent from each

other. As existing works have shed light on collaborative bandit

learning [13], it is meaningful to study non-stationary bandits in

a collaborative manner, e.g., monitoring the change and reusing

models across users. It is also important to study a continuously

changing environment, such as Brownian motion or periodical

changes, where the context-dependent changes help us better main-

tain and create bandit models.
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7 APPENDIX
7.1 Proof of Theorem 1
Proof of Eq (3): For the bandit expertm created at time tm , we split

its training instances in Iθ
t (m) up to time t into two setsHt (m) and

˜Ht (m). The instances inHt (m) are all from the reward distribution

governed by θ∗tm , while the instances in
˜Ht (m) are not. According

to the first order optimum condition in ridge regression and the

definition of At (m), the following equation can be obtained,

ˆθt (m) − θ ∗
tm = A−1

t
( ∑
i∈Iθt (m)

xiηi − λθ ∗
tm −

∑
i∈ ˜Ht (m)

xixTi (θ
∗
tm − θ ∗

i )
)

Based on the self-normalized martingale bound in Theorem 1 of

[1], for any δ1 ∈ (0, 1), with a probability at least 1 − δ1, we have

∥ ˆθt (m) − θ ∗
tm ∥At ≤ σ 2

√
d ln

λ + |Iθt (m) |

λδ1
+
√
λ + ∥

∑
i∈ ˜Ht (m)

xixTi (θ
∗
t − θ ∗

i ) ∥A−1
t

To simplify notations, we define Ft (m) =
∑
i ∈ ˜Ht (m)

xixTi (θ
∗
t − θ∗i ).

Then we have,

|xTa ˆθt (m) − xTaθ
∗
tm | ≤ ∥ ˆθt (m) − θ ∗

tm ∥At ∥xat ∥A−1
t

(6)

≤
(
σ 2

√
d ln

λ + |Iθt (m) |

λδ1
+
√
λ + ∥Ft (m) ∥A−1

t

)
∥xat ∥A−1

t

According to the definition of Ft (m) and H̃t (m), Ft (m) can be un-

derstood as a form of contamination in bandit expert m’s esti-

mation of the ground-truth bandit parameter θ∗tm . Denote tc (m)

as the time index of the first change point after the bandit ex-

pertm is created. When t > tc (m), essentially, the contamination

in Ft (m) comes from two sources: First, erroneous updates from

change-sensitive arms, which is referred as false positive selec-

tion of bandit experts. In Lemma 2, we proved that with a high

probability there will not be any false positive selection up to

time t when the auditor’s estimation is not contaminated (best

case scenario). But we may have additional erroneous updates

when the auditor’s observations contain change-sensitive arms col-

lected after the change points. Therefore, the possible erroneous

updates are at most 2
(t−tm )
Smin

τ . This also explains why the sliding

observation window τ of the bandit auditors cannot be arbitrarily

large when we explained in the requirement of this Theorem. The

second source of error is the small contamination from change-

invariant arms, which can be bounded by

(
t − tc (m)

)
∆L , due to

the fact that for change-invariant arms |xTa (θ∗tm − θ∗i )| ≤ ∆L . As

a result, we have Ft (m) ≤ 2
t−tm
Smin

τ ρ +
(
t − tc (m)

)
∆L . Thus when

∆L ≤
σ 2

√
dλ ln

λ+|Iθt (m)|

λδ
1

t−tc (m)
and τ ≤ Smin

σ 2

√
dλ ln

λ+|Iθt (m)|

λδ
1

2ρ(t−tm )
, we have

∥Ft (m)∥A−1
t

≤ 2σ 2

√
d ln

λ+ |Iθt (m) |

λδ1
. Substituting this inequaity into

Eq (6) concludes the proof.

Proof of Eq (4): The training instances for ˆβt (m) are determined

by the bandit expert’s estimation about the ground-truth reward

distribution in the environment. Every time when
ˆθt (m) gets up-

dated, we will revise the historical training instances in
ˆβt (m), i.e.,

compute ea,t (m) by the updated reward estimation. In addition, the

bandit auditors only accumulate badness observations in the most

recent τ interactions. When there is no environment change in this

time window, Eq (4) can be easily derived based on [1]. For the case

in which there is environment change among the τ observations,

wrong selection and update of bandit experts may happen but the

number is relatively small, since the number of mistakes is at most

τ in each stationary period. The effect of these mistakes will be

taken into account in both the bandit expert’s reward estimation

and the final regret in Theorem 2.

Proof of Eq (5): When t ≤ tc (m), Eq (5) is equivalent to Eq (3).

When t > tc (m), we have |xTa ˆθt (m) −xTaθ∗t | ≤ |xTa ˆθt (m) −xTaθ∗tm |+

|xTaθ∗tm − xTaθ∗t |, in which the first term can be bounded by Bθa,t (m)

according to Eq (3). With Lemma 2, when the bandit expert m
is selected for arm a, with a high probability the arm is change-

invariant, which means that |xTaθ∗tm − xTaθ∗t | ≤ ∆L . Putting them

together concludes the proof.

7.2 Proof of Theorem 2
Proof of Theorem 2. According to the reward confidence bound

proved in Eq (5) of Theorem 1, and the UCB arm selection strategy

in Algorithm 1, the regret at time t can be upper bounded by,

E[ra∗t ,t ] − E[rat ,t ] ≤ xat ˆθt (mat ,t ) + B
θ
t,at (mat ,t ) + ∆L − xat θ

∗
t

≤2∆L + 2B
θ
t,at (mat ,t ) (7)

Combining with the additional regret caused by the events when a

bandit auditor’s most recent τ observations contain environment

changes, the cumulative regret can be upper bounded by R(T ) ≤

2ΓT τ + 2T∆L +
∑
m∈MT

∑
i ∈Ωm 2Bθi,ai (m), in which Ωm is the set

of time indices when the bandit expertm is used for arm selection

up to time T . According to the proof of Theorem 3 in [1], we have,∑
i∈Ωm

Bθi,ai (m) ≤

(
3σ 2

√
d ln

λ + |IθT (m) |

λδ1
+
√
λ
)√

|Ωm |d ln(λ +
|Ωm |

d
)

Since

∑
i ∈Ωm 2Bθai ,i (m) is a concave function with respect to |Ωm |,

according to the Jensen’s inequality

∑
m∈MT

∑
i ∈Ωm 2Bθi,ai (m) ≤

|MT |
(
3σ 2

√
d ln λ+UT

λδ1
+
√
λ
)√

Smaxd ln(λ +
Smax

d ), in which UT =

max{|Iθ
T (m)|}m∈MT .

Regarding to the number of bandit experts in MT : denote the
possible number of false negative detection as kFN , which follows

a binomial distribution B(T , PFN ). According to Lemma 1 and the

tail bound of Binomial distribution, it can be proved that with a

high probability, |MT | ≤ ΓT + kFN ≤ ΓT + 1. Combining all the

conclusions above we have,

R(T ) ≤ 2ΓT τ + 2T∆L +
∑

m∈MT

∑
i∈Sm

2Bθi,ai (m) ≤ (
1

ρ
+ 2)σ 2

√
dλ ln

λ +T
λδ1

+ (ΓT + 1)
(
3σ 2

√
d ln

λ +UT
λδ1

+
√
λ
)√

ST d ln(λ +
ST
d

)

which finishes the proof. □

Proofs of Lemma 1 and Lemma 2 are omitted here due to space

limit. They will be provided in a longer version of this paper.
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