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ABSTRACT
Online Learning to Rank (OL2R) algorithms learn from implicit

user feedback on the fly. The key to such algorithms is an unbiased

estimate of gradients, which is often (trivially) achieved by uni-

formly sampling from the entire parameter space. Unfortunately,

this leads to high-variance in gradient estimation, resulting in high

regret during model updates, especially when the dimension of the

parameter space is large.

In this work, we aim at reducing the variance of gradient es-

timation in OL2R algorithms. We project the selected updating

direction (i.e., the winning direction) into a space spanned by the

feature vectors from examined documents under the current query

(termed the “document space” for short), after an interleaved test.

Our key insight is that the result of an interleaved test is solely

governed by a user’s relevance evaluation over the examined doc-

uments. Hence, the true gradient introduced by this test is only

reflected in the constructed document space, and components of

the proposed gradient which are orthogonal to the document space

can be safely removed, for variance reduction purpose. We prove

that this projected gradient is still an unbiased estimation of the

true gradient, and show that this lower-variance gradient estima-

tion results in significant regret reduction. Our proposed method

is compatible with all existing OL2R algorithms which rank docu-

ments using a linear model. Extensive experimental comparisons

with several state-of-the-art OL2R algorithms have confirmed the

effectiveness of our proposed method in reducing the variance of

gradient estimation and improving overall ranking performance.
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1 INTRODUCTION
Online Learning to Rank (OL2R) [6] is a family of online learning

solutions, which exploit implicit feedback from users to directly

optimize parameterized rankers on the fly. It has drawn increasing

attention in research community in recent years due to its advan-

tages over classical offline learning to rank algorithms [10]. First, it

avoids the expensive and time consuming process of offline result

relevance annotation. Second, as it directly learns from user feed-

back, it optimizes the ranking results to best reflect current user

preferences [15]. Third, because the model is updated on the fly,

there is no need to store user click history offline, which alleviates

many privacy concerns [21].

One strain of OL2R algorithms, represented by Dueling Bandit

Gradient Descent (DBGD) [24], optimize a linear scoring function

by exploring the parameter space via interleaved test. Algorithms

of this type first propose an exploratory direction as a tentative

model update direction, and then update the current ranker if the

proposed direction provides better ranking utility. In practice, re-

sult utility is usually inferred from user clicks on an interleaved

list of ranking results from each ranker [23]. The key technical

insight of DBGD-type algorithms is that the expectation of selected

directions is an unbiased estimate of true gradient of the unknown

loss function for ranking [5]. As a result, DBGD is essentially a

stochastic online gradient descent algorithm. However, because the

exploration directions are uniformly sampled from the entire pa-

rameter space, when the dimensionality of the space is high (which

is usually the case in practice), the variance in gradient estimation

becomes large. This directly slows down the learning convergence

of the algorithm and inevitably increases sample complexity.

Recently, several works in OL2R have realized this deficiency

of gradient exploration in DBGD, and propose various types of

solutions to improve its learning efficiency. One type of studies

explore multiple random directions in each iteration of model up-

date. Unbiased estimate of gradient is maintained in this type of

revisions of DBGD, as the directions are still uniformly sampled.

Model estimation variance is expected to be reduced by testing

more exploratory directions; but, in practice, as the users would

only examine a finite number of documents under each query (e.g.,

due to position bias [9]), the sensitivity of interleaved test drops as a

result of more exploratory rankers having to be tested at once. This

unfortunately introduces additional variance in model estimation.

Another type of research constrains the sampling space for gradient

exploration. However, this line of solutions cannot guarantee the
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estimated gradient remains unbiased, and thus face high risk of

converging towards a sub-optimal solution.

Although empirically effective, previous OL2R solutions neglect

an important property of click-based result utility evaluation: users

only perceive utility from the documents that they actually examine.

As a result, the true gradient is only revealed by features playing

an essential role in ranking those examined documents under this

query. Here we define essential features in ranking a particular

set of documents as those features with non-zero variance among

the documents. Assume in an interleaved test, one ranking feature

takes a constant value in all examined documents under this query,

such that it has no effect in differentiating the quality of those

documents. Then, the proposed exploratory direction’s contribution

to the ranker update on this particular dimension cannot be justified

by this test result. Random gradient exploration hence introduces an

arbitrary update on this dimension, which inevitably leads to high

estimation variance over time. This example can be generalized to

situations where multiple (even correlated) features have no effect

in differentiating the utility of examined documents in the result of

an interleaved test. Because in practice users usually only examine

a handful of documents under each query [4, 9], but each document

consists of hundreds or even thousands of ranking features, the

variance introduced by random exploration on those non-essential

features could be considerably large.

The above analysis suggests that an interleaved test only reveals

the projection of true gradient in the spanned space of examined

documents under a test query (termed the “document space” in

this paper). With this as our motivation, we decide to project the

winning direction back into the document space so as to reduce the

variance introduced by random gradient exploration. We construct

the document space from inferred users’ result examinations [4],

which are not observable in the user response but can be statistically

modeled. Because this projection is independent from how the

proposal directions are created, this solution can be directly applied

to any DBGD-type OL2R algorithm. We theoretically prove that the

projected direction is still an unbiased estimate of the true gradient,

i.e., model convergence is guaranteed, and also prove the reduced

variance directly leads to considerable regret reduction in online

model update. We compare the proposed method with several state-

of-the-art OL2R algorithms on a collection of large-scale learning

to rank datasets and confirmed the effectiveness of our method.

2 RELATEDWORK
One key family of OL2R methods root in Dueling Bandit Gradient

Descent (DBGD) [24], which uses online gradient descent to solve

a bandit convex optimization problem [5]. In each iteration, DBGD

uniformly samples a random direction from the entire parameter

space to create an exploratory ranker, and uses an interleaved test

[15] to compare the current ranker with the exploratory one. If the

exploratory ranker is preferred, the proposed direction is used as

the gradient to update the model. This procedure yields an unbiased

estimate of the true gradient [22]. However, the variance of DBGD’s

gradient estimation is high due to the nature of uniform exploration

of the entire parameter space, which limits its learning efficiency.

Recently, attempts have been made to improve the learning ef-

ficiency of DBGD-type algorithms. Schuth et al. [17] proposed a

Multileave Gradient Descent (MGD) algorithm to explore multiple

stochastic directions in each iteration with multi-interleaving com-

parison [18]. Zhao and King [25] developed a Dual-Point Dueling

Bandit Gradient Descent algorithm to sample two stochastic vec-

tors with opposite directions as the candidate gradients. The basic

idea of this line of solutions is to test more exploratory directions

at once so as to obtain the true gradient estimate sooner. However,

their gradient exploration is still within the entire feature space.

As users often only examine a small number of documents under

each query, the sensitivity of interleaved test drops due to more

exploratory rankers needing to be tested. In a different direction of

solutions, researchers proposed to constrain the sampling space for

gradient exploration. Hofmann et al. chose to filter the stochastic

directions by historical comparisons before an interleaved test [7].

Oosterhuis et. al [12] proposed exploring gradients in a subspace

constructed by a set of preselected reference documents from an

offline training corpus. Wang et al. [20] proposed using historical

interactions to avoid repeatedly exploring less promising directions,

which also reduces gradient exploration to a subspace. However,

the variance of gradient exploration is reduced at a cost of intro-

ducing bias into gradient approximation, so that such algorithms

have a risk of converging to sub-optimal results.

Our solution falls into this second category of variance reduc-

tion for DBGD-type algorithms. Distinct from previous attempts to

restrict gradient exploration before an interleaved test, we instead

modify the selected direction after the test. As users’ result examina-

tion is affected by the ranked results, which are in turn determined

by the proposed exploratory directions, restricting the exploration

space before the interleaved test potentially introduces bias in the

subsequent interleaved test and model update. Our solution is based

on the insight that only the projected true gradient in the document

space can be revealed by an interleaved test. Hence, we decide to

project the selected direction after each interleaved test, and thus

guarantee an unbiased estimate of true gradient. Since the docu-

ment space is expected to be smaller than the entire parameter

space (as it is constructed only by the examined documents), the

projected gradient enjoys low variance and leads to faster model

convergence in online update.

3 METHOD
In this section we describe our proposed document space gradient

projection method for online learning to rank. We first describe

the problem setup in Section 3.1. And then we describe Document

Space Projected Dueling Bandit Gradient Descent (DBGD-DSP)

algorithm as an example of our proposed general solution in Section

3.2. Our gradient projection method is independent from how the

exploratory gradient is proposed, and thus can be directly applied

to any existing DBGD-type algorithm to reduce its variance of

gradient estimation. We rigorously prove the unbiasedness of our

gradient estimation in Section 3.3 and analyze the regret of DBGD-

DSP in Section 3.4. The same procedure and conclusions can be

applied to any DBGD-type algorithm of interest.

3.1 Problem Setup
The estimation of OL2R models can be formalized as a dueling

bandit problem [24]. In iteration t , an OL2R algorithm receives a



query and associated candidate documents, which are represented

as a set of d-dimensional query-document pair feature vectors

Xt = {x1,x2, ...,xs }. The algorithm takes two actions: first, it

proposes two rankers, whose parameters are denoted as w,w ′
;

second, it ranks the given documents with these two rankers ac-

cordingly. An oracle (i.e., user) compares (duels) the two rankers’

results and provides feedback. In practice, an interleaving method

[15] is applied to merge the ranking lists of the two rankers and

display the resulting ranked list to the user. User preference is in-

ferred from the click feedback. Thus, the ranker that contributes

more clicked documents is preferred. We denote w ≻ w ′
for the

event that w is preferred over w ′
. The comparison between two

individual rankers is determined independently of other compar-

isons performed before with a probability P (w ≻ w ′ |Xt ), such that

P (w ≻ w ′ |Xt ) = Pt (w ≻ w ′) = ft (w,w
′). ft (w,w

′) can be viewed

as the distinguishability of the two rankersw andw ′
by an inter-

leave comparison under query Xt .
We quantify the performance of an online learning algorithm

using cumulative regret defined as follows:

R(T ) =
T∑
t=1

ft (w
∗,wt ) + ft (w

∗,w ′
t ), (1)

wherewt andw
′
t are rankers compared at time t , andw∗

is the best

ranker in ground-truth. As a result, the distinguishability measure

ft (w
∗,w) indicates the loss of proposing a sub-optimal ranker w .

We denote ft (wt ,w) as ft (w) for simplicity. The goal of an OL2R

algorithm is to optimize its parameter towardsw∗
according to loss

ft (w). A desired OL2R algorithm should have a sublinear regret

in a finitie time horizon T , so that the one-step regret is quickly

decreasing to zero over time.

In this work, we make the following assumptions similar to [24].

We assume an unknown utility function vt (w) that quantifies the

quality of a ranker w over query Xt . The utility function vt is

assumed to be differentiable, strongly concave and Lv -Lipschitz,
which means |vt (x) −vt (y)| ≤ Lv |x − y |.

A link function σ describes the probabilistic comparison of utili-

ties of two rankers as,

Pt
(
w ≻ w ′

)
= ft (w,w

′) = σ
(
vt (w) −vt (w

′)
)
.

The link function should be rotation-symmetric, which means

σ (x) = 1 − σ (−x). We assume the link function is Lσ -Lipschitz
and second order L2-Lipschitz. The link function behaves like a

cumulative probability distribution function. For example, a com-

mon choice of link function is the standard logistic function σ (x) =
1

1+exp(−x ) , which satisfies all the assumptions.

3.2 Document Space Projected Dueling Bandit
Gradient Descent

We describe our proposed Document Space Projected Dueling Ban-

dit Gradient Descent (DBGD-DSP) in Algorithm 1. We should note

it fits all OL2R algorithm settings. At the beginning of iteration t ,
user initiates a query Xt . We denote wt as the parameter of the

current ranker. DBGD-DSP first uniformly samples a vectorut from

d dimensional unit sphere Sd−1 (i.e., |ut |2 = 1) as an exploratory

direction, and proposes a candidate rankerw ′
t = wt + δut , where

δ is the step size of exploration. The algorithm then uses the two

Algorithm 1 Document Space Projected Dueling Bandit Gradient

Descent (DBGD-DSP)

1: Inputs: δ ,α
2: Initiatew1 = sample_unit_vector()
3: for t = 1 to T do
4: Receive query Xt = {x1,x2, ...,xs }
5: ut = sample_unit_vector()
6: w ′

t = wt + δut
7: Generate ranked lists l(Xt ,wt ), l(Xt ,w

′
t )

8: Set Lt = Interleave

(
{l(Xt ,wt ), l(Xt ,w

′
t )}

)
, and present Lt

to user

9: Receive click positions Ct on Lt , and infer click credits

{ct , c
′
t }

10: if ct ≥ c ′t then
11: wt+1 = wt
12: else
13: Based on Ct , infer user examined topmt documents in

Lt .
14: Solve the orthogonal projectionmatrixAt for document

space St = span({xLt ,1,xLt ,2, ...,xLt ,mt }).

15: Project ut onto St by дt = Atut
16: wt+1 = wt + αдt
17: end if
18: end for

rankers (wt andw
′
t ) to generate ranking lists l(Xt ,wt ) and l(Xt ,w

′
t )

accordingly, and combines them with an interleaving method, such

as TeamDraft Interleaving [15] or Probabilistic Interleaving [8]. The

user examines the result list and provides implicit click feedback

to indicate their relevance evaluation of the results. The interleav-

ing method uses this implicit feedback to infer which ranker is

preferred by the user. If the exploratory ranker is preferred (i.e.,

wins the duel), previous DBGD-style algorithms update the current

ranker bywt+1 = wt +αut , where α is the learning rate; otherwise

the current ranker stays intact. This gradient exploration strategy

yields an unbiased estimate of the true gradient [5], in terms of

expectation.

However, since the exploratory gradient ut is required to be uni-

formly sampled from the entire d dimensional unit sphere Sd−1, the
model update suffers from high variance in its gradient estimation,

especially when d is large, as in practice. Various improvements to

this issue have been proposed in the past, but they still introduce

other difficulties, such as variance and bias trade-off [7, 12, 20], and

test sensitivity and efficiency [18, 25].

Unlike previous works that reduce the sampling space of gradi-

ent exploration before the interleaved test [7, 12, 20], we change

the winning direction after the test. The key insight is that only

the projected true gradient in the spanned space of examined doc-

uments under query Xt (denoted as document space St ) can be

revealed by an interleaved test. For example, as shown in Figure 1,

a DBGD-style algorithm is comparing the current rankerwt and

w ′
t = wt + δut with a uniformly sampled exploration direction

ut . The user examines top m documents, e.g., {x1, ..xm }, of the

interleaved ranking list (of coursem is unknown to the algorithm)

andw ′
t wins the duel. The estimated gradient ut can therefore be

separated into two components, one component дt that belongs to
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Figure 1: Illustration of model update for DBGD-DSP in a
three dimensional space. Dashed lines represent the trajec-
tory of DBGD following different update directions.ut is the
selected direction by DBGD, which is in the 3-d space. Red
bases present the document space St on a 2-d plane.ut is pro-
jected onto St to become дt for model update.

the document space St = span{x1, ..xm } and the other component

ut − дt that is orthogonal to document space St . The orthogonal
component ut −дt does not affect the ranking among the examined

documents, i.e. (wt + δut )
T xi = (wt + δдt )

T xi , and thus does not

contribute to the loss function and true gradient estimation. Intu-

itively, ut − дt is not supported by the observed interleaved test, as

anything sampled from the complement of St cannot be verified by
the examined documents. As a result, it is safe to exclude the direc-

tion ut −дt from model update, which we later prove maintains the

unbiasedness of the original DBGD-type gradient estimation, and

reduces the variance. As illustrated in Figure 1, although ut will
eventually lead to the same model estimation, as it is unbiased, this

guarantee is only obtained in expectation. The variance could po-

tentially be large: for example, the blue and purple updating traces

slow down model convergence, when the number of observations

is finite.

As shown in line 14 to 16 of Algorithm 1, we solve for the or-

thogonal projection matrix At of document space St , and project

the selected direction ut onto the document space St after each
interleaved test. We leave the detailed design of constructing docu-

ment space and solving projection matrix At in Section 3.5. Before

that, we first rigorously prove the projection maintains an unbiased

estimate of true gradient in Section 3.3. Since the document space is

constructed only by the examined documents, the rank of document

space is expected to be smaller than the entire parameter space.

This directly leads to lower variance and faster model convergence.

We show that our document space projection reduces the variance

of gradient estimation from d to Rank(At ) in Section 3.4, and then

analyze its benefit for regret reduction from low-variance gradient

estimation.

3.3 Unbiasedness of Gradient Estimation
We now prove that our document space projected gradient is an

unbiased estimate of true gradient in the sense of expectation [24].

We define Zt (w) as the event ofw winning the duel withwt ,

Zt (w) =

{
1 w.p. 1 − Pt (wt ≻ w)

0 w.p. Pt (wt ≻ w)

Then the gradient used for model update in DBGD-DSP (as de-

scribed in Algorithm 1) can be described as,

ht = −Zt (wt + δut )дt . (2)

Note that by adding a negative sign we view our model update as

online gradient descentwt+1 = wt − αдt .
We now show in the following theorem that this is an unbiased

gradient estimation of true gradient. By defining a smoothed version

of ft as ˆft (w) = Eu ∈B[ft (w + δu)], we have:

Theorem 3.1. The projected gradient дt in DBGD-DSP is an unbi-
ased estimate of true gradient, i.e.,

E[ht ] =
δ

d
∇ ˆft (w) (3)

over random unit vector ut .

Proof. Based on the Lemma 1 of [24], we have

E [ht ] = E [−Zt (wt + δut )Atut ] = Eut ∈Sd−1 [ft (w + δAtut )ut ]

Define Ft (w) = ft (Atw), we have

E[ht ] = Eut ∈Sd−1 [ft (wt + δAtut )ut ]

= Eut ∈Sd−1 [Ft (A
−1
t wt + δut )ut ]

=
δ

d
∇Eut ∈Bd [Ft (A

−1
t wt + δut )ut ]

=
δ

d
∇F̂t (A−1

t wt )

=
δ

d
At∇ ˆft (wt )

=
δ

d
∇ ˆft (wt )

where the fourth equality is based on Stokes’ Theorem. The last

equality holds because gradient∇ ˆft (wt ) belongs to document space

St , and thus projecting it by At maps back to itself. □

The guarantee of unbiased gradient estimation is a major advan-

tage of our proposed document space gradient projection method,

compared with previous attempts to reduce the gradient explo-

ration space, such as Oosterhuis et. al [12] and Wang et al. [20].

Our method enjoys reduced variance of gradient estimate (which

will be proved next), without the risk of converging towards a sub-

optimal solution. We should note that the above is independent

from the mechanism of how the proposal directions are generated,

as shown in the first four steps of proof above. As a result, if the

input direction to our projection procedure is unbiased, the result-

ing update direction is also unbiased. This enables our solution’s

generalization to other types of DBGD algorithms.

3.4 Regret Analysis of DBGD-DSP
We now analyze the regret of our proposed DBGD-DSP algorithm,

starting with its variance of gradient update.

Lemma 3.2. The variance of gradient update in DBGD-DSP is
bounded by

E[|ht |
2] = Eut ∈Sd−1

[
| − Zt (wt + δut )Atut |

2
]
≤

Rank(At )

d
.



Proof.

E[|ht |
2] = Eut

[
| − Zt (wt + δut )Atut |

2
]

≤ Eut
[
|Atut |

2
]

= Eut
[
(Atut )

⊤(Atut )
]

= tr

(
Eut

[
Atutu

⊤
t A

⊤
t
] )

//apply the trace trick

= tr

(
AtEut

[
utu

⊤
t
]
A⊤
t
)

= tr

(
At

1

d
IA⊤

t

)
=

1

d
tr

(
AtA⊤

t
)

=
1

d
tr (At ) //a projection matrix is idempotent

=
Rank(At )

d

where tr(·) denotes the matrix trace operation. The sixth equality

holds because ut is uniformly sampled from a unit sphere, and

its covariance matrix Eut
[
utu

⊤
t
]
is

1

d I . Since At is an orthogonal

projection matrix, the eighth equality holds for AtA⊤
t = At . □

Remark. The variance of gradient update in DBGD [24] is bounded

by Eut
[
| − Zt (wt + δut )ut |

2
]
≤ 1.

Comparing the variance of gradient update in DBGD-DSP with

DBGD, our method reduces the variance from 1 to
Rank(At )

d . Since

the dimension of projectionmatrixAt isd-by-d , we haveRank(At ) ≤

d , which guarantees the reduction of variance in DBGD-DSP com-

paring to that in DBGD. The rank of At is also bounded by the

number of examined documentsmt , since document space St is
constructed by thesemt examined documents. In practice, users

would only examine a handful of documents [4, 9], while the rank-

ing feature dimension is expected to be much larger. We argue

thatmt ≪ d , such that our document space projection achieves

considerable variance reduction.

The significance of this variance reduction can be intuitively

understood from Figure 1: though different traces of model update

would eventually lead to the same converged model, if one has a

sufficiently large amount of interactions with users, the one with

lower variance would always require less observations. A faster

converging algorithm leads to user satisfaction earlier. Next, we

verify this benefit by proving the reduction of regret introduced by

the reduced variance in gradient estimation.

Theorem 3.3. By setting

m = max

t
mt ,δ =

√
2Rm

√
13LT 1/4

,α =
Rm
√
Tδ
,

the expected regret of DBGD-DSP as defined in Eq (1) is upper bounded
by,

E[Reд] ≤ 2λTT
3/4

√
26RmL, (4)

where

λT =
Lσ

√
13LT 1/4

Lσ
√
13LT 1/4 − LvL2

√
2Rm

The proof is obtained by extending Theorem 2 in [24]. We omit

the details due to space limit, and emphasize that the key difference

is introduced by replacing variance of gradient estimation from

Eut
[
| − Zt (wt + δut )ut |

2
]
to Eut

[
| − Zt (wt + δut )Atut |

2
]
. Since

the variance of gradient estimation is reduced from 1 to
Rank(At )

d ,

the regret of DBGD can be reduced fromO(
√
dT 3/4) toO(

√
mT 3/4),

wherem is the maximum number of documents included in a docu-

ment space under a single query. Again, as the number of included

ranking features is oftentimes much larger than the number of doc-

uments a user would examine under a single query, the reduction of

regret is considerable. Moreover, as the reduction of variance from

our project-based method is independent from the way about how

the proposal directions are generated, our method can be generally

applied to most existing DBGD-type OL2R algorithms to improve

their learning convergence.

3.5 Practical Treatments of Document Space
Projection

Now we discuss several practical treatments of our proposed Docu-

ment Space Projection method, including the construction of docu-

ment space and orthogonal projection matrix.

In our theoretical analysis, we have assumed the knowledge of

users’ examined documents and corresponding projection matrix.

However, in practice, a user’s result examination is unobserved.

A rich body of research has been developed to perform statistical

inference of it, collectively known as click modeling [3, 4]. Any

of these existing click modeling solutions can be plugged into our

solution framework, i.e., line 13 of Algorithm 1. In this work, we

simply follow [9] to infer user examination by the last clicked

position: given the click position list Ct , we use the last clicked po-

sition cl,t to approximate the last examined position Mt by setting

Mt = cl,t + k , where k is a hyper-parameter. Based on sequential

examination hypothesis of click modeling, every document before

the last clicked position is examined, and we use k to approximate

the number of positions following the last clicked position that

was still examined. We leave more comprehensive study of click

modeling in our solution as future work.

The above treatment provides a reasonable inference of exam-

ined documents. However, it requires a careful choice of k for each

query (preferably). If k is set too large, variance of gradient esti-

mate will increase (as proved in Lemma 3.2). If k is too small, the

document space may not include all examined documents, and it is

at risk of introducing bias in gradient projection. To avoid bias in

constructing the document space, we also consider adding histori-

cally examined documents to the current query’s document space.

Specifically, we add r recently examined documents to the cur-

rent document space St to compensate the potentially overlooked

examined documents in the current query.

In line 14 of Algorithm 1, we solve the orthogonal projection

matrix At of document space St . At could be computed by several

methods. Denote Dt as a d-by-mt matrix where each column is the

feature vector for an examined document. One can use QR decom-

position or Singular Value Decomposition (SVD) to solve for its

orthonormal basisVt , and projectionmatrix can then be constructed

by At = VtV
T
t . In our experiments, we chose SVD for constructing

the basis of document space, because of its widely available and

efficient large-scale implementation. But the choice for the con-

struction of this project matrix does not affect the convergence nor

unbiasedness of our proposed solution.



4 EXPERIMENTS
To demonstrate our proposed Document Space Projection method’s

empirical efficacy, we compare the performance of several state-of-

the-art OL2R algorithms on five public learning to rank datasets,

with and without our document space projection method applied.

4.1 Experiment Setup
• Datasets. We tested our algorithms and the baselines on five

benchmark datasets: including MQ2007, MQ2008, NP2003 [11],

MSLR-WEB10K [14], and the Yahoo! Learning to Rank Challenge

dataset [2]. In each of the five datasets, each query-document pair

is encoded as a vector of ranking features. These features include

PageRank, TF.IDF, Okapi-BM25, URL length, language model score,

and many more varied by dataset.

The MQ2007 and MQ2008 datasets are collected from the 2007

and 2008 Million Query track at TREC [19]. MQ2007 contains

about 1700 queries, and MQ2008 contains about 800 queries, which

represent a mix of informational and navigational search intents.

They both have 46-dimensional feature vectors to represent query-

document pairs, and the document relevance are labeled in three

grades: 0 (not relevant), 1 (relevant), and 2 (most relevant).

The NP2003 dataset also comes from the TREC Web track, con-

sisting of queries crawled from the .gov domain. It is comprised of

about 150 navigational-focused queries, with over 1000 document

relevance assessments per query. It uses 64 ranking features, and

the document relevance labels are binary (0 and 1 only).

The MSLR-WEB10K dataset was released by Microsoft in 2010,

and consists of 10,000 queries with relevance assessments coming

from a labeling set from the Microsoft Bing search engine. It has

136 ranking features, and the relevance judgments range from 0

(not relevant) to 4 (most relevant).

The Yahoo! Learning to Rank Challenge dataset was also released

in 2010, as an effort on part of Yahoo! to promote the dataset as

well as research into better learning to rank algorithms. The dataset

contains about 36,000 queries, 883,000 assessed documents, and 700

ranking featuress. Again, the relevance judgments range from 0

(not relevant) to 4 (most relevant)

This diversity in the structure of the datasets that we chose to

test on helps us to evaluate our algorithms more holistically. While

small, the MQ2007 and MQ2008 sets have been around for a long

time and have a good mix of query types. NP2003 gives us insight

into how the algorithms perform on navigational search intents

specifically, which are markedly different in nature from infor-

mational search intents. MSLR-WEB10K and the Yahoo! dataset

are large-scale datasets used by actual commercial search engines,

which give us a better understanding of how the algorithms perform

in practice. Since each dataset was split into training, testing, and

validation subsets, we used the training sets for online experiments

to measure cumulative performance, and used the testing sets for

evaluating offline performance.

• Simulated User Interactions. Based on an online learning to

rank framework proposed in [13], we use the standard setup to

simulate user interactions. Within this framework, we used the

Cascade Click Model to simulate user click behavior. This model

assumes that a user interacts with a set of search results by linearly

scanning the list from top and making a decision for each document

Table 1: Configurations of simulation click models.

Click Probability Stop Probability

R 0 1 2 3 4 0 1 2 3 4

Per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0

Nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9

Inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

as to whether or not to click. In the model, the probability of a

click for a given document is conditioned on the relevance label of

that document, as a user is expected to be more likely to click on

relevant documents. After evaluating each document, the user must

decide whether or not to continue perusing the list. This decision’s

probability distribution is again conditioned on the relevance of

the current document, as a user is more likely to stop looking

through the results if he/she has already satisfied their information

need. These aforementioned probabilities can be altered to simulate

different types of users and interactions.

As illustrated in Table 1, we use three different click model prob-

ability configurations to represent three different types of users.

First, we have the perfect user, who clicks on all relevant docu-

ments and does not stop browsing until they have visited all of the

documents. This type of users contribute the least noise, as they

make no mistakes and the feedback is entirely accurate. Second,

we have the navigational user, who is very likely to click on the

first highly relevant document that he/she sees and stops there.

Third, we have the informational user, who, in his/her search for

information, sometimes clicks on irrelevant documents, and as such

contributes a significant amount of noise in click feedback.

•EvaluationMetrics.As set forth in [16], cumulative (online) Nor-

malized Discounted Cumulative Gain (NDCG) and offline NDCG

are commonly used metrics for evaluating OL2R algorithms. Cumu-

lative NDCG is calculated by summing NDCG scores from succes-

sive iterations with a discount factor γ set to 0.995. We assess our

model’s estimation convergence via cosine similarity between the

current weight vector and a reference weight vector (considered to

be the optimal vector) as estimated by an offline learning-to-rank

algorithm trained with the complete true relevance judgment labels.

Due to its superior empirical performance, we used LambdaRank

[1] with no hidden layer in our experiments to estimate this refer-

ence weight vector. In each experiment, the number of iterations T
was set to 10,000, and the current query Xt was randomly sampled

from the dataset in each iteration. We execute all the experiments

15 times with different random seeds, and report and compare the

average performance in all experiments.

• Evaluation Questions. To better understand the advantages of

our proposed algorithms, we aim to answer the following evaluation

questions through the course of our experiments.

Q1: Can our proposed Document Space Projection method con-

sistently improve the performance of state-of-the-art OL2R

algorithms?

Q2: Do gradients rectified by our document space projection

explore the gradient space more efficiently?

Q3: How do different hyper-parameter settings alter the perfor-

mance of our document space projection?

• Baseline Algorithms. We choose the following three state-of-

the-art OL2R algorithms as our baselines for comparison:
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Figure 2: Offline NDCG@10 on Yahoo! dataset.

- DBGD [24]: A single direction uniformly sampled from the

whole parameter space is explored.

- MGD [17]: Multiple directions are explored in one iteration

to reduce the gradient estimation variance. Multileaving is

used to compare multiple rankers. If there is a tie, the model

updates towards the mean of all winners.

- NSGD[20]: Multiple directions are sampled from the null

space of previously poorly performing gradients. Ties are

broken by evaluating the tied candidate rankers on a recent

set of difficult queries.

We apply our proposed Document Space Projection to the baseline

algorithms, and compare them with DBGD-DSP, MGD-DSP and

NSGD-DSP, respectively.

4.2 Performance of Document Space Projection
We begin our experimental analysis by answering our first evalua-

tion question. We compared all algorithms over 3 click models and

5 datasets. We set the hyper-parameters of DBGD, MGD and NSGD

according to their original papers. Following [17, 24], we set the

exploration step size δ to 1 and learning rate α to 0.1. Both MGD

and NSGD explore 9 proposal directions in one iteration. For our

document space projection method, we consider k = 3 documents

following the last clicked position as examined documents, and add

r = 10 recently examined documents into document space St . We

use SVD to solve for orthonormal basis Vt of the document space

St , and compute the projection matrix by At = VtV
⊤
t .

We reported the offline NDCG@10 and online cumulative NDCG

@10 after 10,000 iterations in Table 2 and Table 3. Due to space

limit, we only reported the offline performance during the 10,000

iterations over 3 click models on Yahoo dataset, a large-scale real-

world L2R dataset with 700 ranking features, in Figure 2. MGD

improves the online performance over DBGD by exploring multiple

rankers simultaneously, and NSGD further improves over MGD

by exploring gradients in a constrained subspace, as shown in Ta-

ble 2. We observe that our proposed document space projection

method consistently improves the online performance of all base-

line algorithms. Recall that in Section 3.4 our theoretical analysis

suggested that document space projection reduces the gradient

estimation variance and improves the regret (online performance)

with respect to the ratio between the rank of document space and

feature dimension. Correspondingly, we observe that indeed we

improved the OL2R models’ ranking performance significantly over

MSLR-WEB10K and Yahoo datasets, which are collected from real-

world commerical search engines and have much higher feature

dimensions (130 and 700 respectively). This result demonstrates the

potential of document space projection to improve large-scale real-

world OL2R applications with high-dimension ranking features, as

our algorithm attains satisfactory performance earlier than other

OL2R algorithms measured by online NDCG@10. We also notice

that the standard deviation of those models’ ranking performance is

reduced when applying document space projection, which confirms

our analysis of variance reduction in Lemma 3.2.

From Figure 2 and Table 3 we notice that document space projec-

tion mostly improves offline performance over baseline algorithms.

Figure 2 shows that document space projection significantly accel-

erates the convergence rate over the baseline algorithms, because

of the reduced variance in gradient estimation. We also observe that

applying document space projection under the perfect click model

may lead to degraded performance, for example DBGD on MQ2007

and Yahoo dataset. This is because document space projection guar-

antees an unbiased gradient estimation under the assumption of

known result examinations, as discussed in Section 3.3. However,

since in practice a user’s result examination is unobserved, we ap-

proximated the examined documents by including all documents

before the last clicked position and k additional documents after

the last clicked position. The perfect click model is an ideal case

that users’ stop probability is set to 0.0 (see Table 1) and every doc-

ument is examined. Here, the document space needs to include all

displayed documents to guarantee the unbiasedness, which requires

a significantly larger k compared to the k used for navigational and

informational click models. We argue that in practice since users

only examine a handful of documents, we could well-approximate

the examined documents with a reasonable choice of k . More so-

phisticated click models can also be introduced. We will analyze

the effect of k in Section 4.3. In addition, we also observe that under

informational click model the performance of NSGD-DSP is slightly

decreased compared with original NSGD over three datasets. Note

that since NSGD does not guarantee its gradient exploration is

unbiased, further projecting its gradient may also lead to a biased

gradient update and thus a sub-optimal model.

4.3 Analysis of Document Space Projection
To answer the second evaluation question, we design two experi-

ments to show the effectiveness of document space projected gra-

dient. In the first experiment, we study the utility of document

space projected gradient. We compare the ranking performance of

linearly interpolating the unrectified direction ut and its document

space projected version дt , i.e., λдt + (1 − λ)ut , based on the MGD



Table 2: Online NDCG@10, standard deviation and relative improvement of document space projection of each algorithm after
10,000 queries.

Click Model Algorithm MQ2007 MQ2008 MSLR-WEB10K NP2003 Yahoo

Perfect

DBGD 679.3 (21.6) 847.1 (38.4) 532.2 (15.3) 1130.2 (43.3) 1165.5 (22.6)

DBGD-DSP 689.1 (19.5)(+1.44%) 858.0 (39.2)(+1.29%) 553.6 (13.1)(+4.02%) 1198.8 (40.0) (+6.07%) 1198.8 (33.5)(+2.86%)

MGD 689.1 (14.6) 859.4 (38.1) 558.3 (7.0) 1192.9 (44.6) 1201.9 (16.3)

MGD-DSP 757.3 (16.2)(+9.90%) 919.5 (42.2)(+6.99%) 626.4 (9.6)(+12.20%) 1335.3 (39.1)(+11.94%) 1309.4 (10.6) (+8.94%)
NSGD 684.4 (20.5) 867.5 (40.3) 589.5 (14.2) 1274.9 (47.4) 1162.3 (12.9)

NSGD-DSP 732.5 (20.0)(+7.03%) 904.3 (38.0)(+4.24%) 635.6 (12.8)(+7.82%) 1368.5 (41.1)(+7.34%) 1270.1 (2.5)(+9.27%)

Navigational

DBGD 646.1 (23.4) 817.9 (45.5) 517.5 (20.9) 1062.3 (55.4) 1133.3 (40.8)

DBGD-DSP 664.9 (26.9)(+2.91%) 830.3 (44.1)(+1.52%) 543.1 (14.8)(+4.95%) 1140.1 (52.5)(+7.32%) 1199.4 (34.6)(+5.83%)

MGD 632.7 (15.5) 827.5 (35.5) 538.2 (7.2) 1115.4 (44.6) 1171.3 (20.4)

MGD-DSP 694.5 (15.7)(+9.77%) 882.3 (40.0)(+6.62%) 586.9 (9.5)(+9.05%) 1300.9 (39.6)(+16.63%) 1290.2 (15.3) (+10.15%)
NSGD 660.1 (24.5) 849.1 (36.6) 562.1 (18.8) 1211.1 (66.5) 1186.2 (16.8)

NSGD-DSP 724.6 (24.5)(+9.77%) 895.8 (34.2)(+5.50%) 608.3 (12.1) (+8.22%) 1296.2 (24.3) (+7.03%) 1283.4 (7.2)(+8.19%)

Informational

DBGD 583.4 (46.0) 763.9 (55.1) 472.4 (34.6) 849.8 (144.5) 1107.3 (46.6)

DBGD-DSP 620.1 (40.8)(+6.29%) 782.4 (51.8) (+2.42%) 522.1 (18.6) (+10.52%) 992.5 (81.1)(+16.79%) 1158.5 (22.0)(+4.62%)

MGD 621.2 (18.2) 817.5 (45.3) 538.3 (10.8) 1107.9 (46.2) 1146.6 (37.5)

MGD-DSP 671.4 (18.9)(+8.08%) 865.9 (37.7)(+5.92%) 580.5 (10.4)(+7.84%) 1274.5 (42.9)(+15.04%) 1268.1 (16.4)(+10.60%)
NSGD 629.7 (25.3) 814.9 (37.1) 532.9 (15.2) 1123.5 (59.8) 1110.5 (10.9)

NSGD-DSP 703.6 (29.2)(+11.74%) 871.3 (48.3)(+6.92%) 597.9 (14.1)(+12.20%) 1222.8 (43.8)(+9.03%) 1204.7 (9.6)(+8.48%)

Table 3: Offline NDCG@10, standard deviation and relative improvement of document space projection of each algorithm
after 10,000 queries.

Click Model Algorithm MQ2007 MQ2008 MSLR-WEB10K NP2003 Yahoo

Perfect

DBGD 0.484 (0.023) 0.683 (0.023) 0.331 (0.009) 0.737 (0.056) 0.688 (0.011)

DBGD-DSP 0.480 (0.020) (-0.83%) 0.685 (0.024) (+0.29%) 0.333 (0.011) (+0.6%) 0.738 (0.059) (+0.14%) 0.681 (0.013) (-1.02%)

MGD 0.495 (0.022) 0.691 (0.020) 0.334 (0.003) 0.746 (0.048) 0.715 (0.002)

MGD-DSP 0.501 (0.021)(+1.21%) 0.695 (0.022)(+0.58%) 0.409 (0.006)(+22.46%) 0.748 (0.055)(+0.27%) 0.725 (0.003)(+1.40%)
NSGD 0.488 (0.019) 0.689 (0.024) 0.397 (0.012) 0.743 (0.050) 0.691 (0.005)

NSGD-DSP 0.491 (0.022)(+0.61%) 0.691 (0.025)(+0.29%) 0.398 (0.008) (+0.25%) 0.750 (0.042) (+0.94%) 0.717 (0.004)(+3.76%)

Navigational

DBGD 0.463 (0.028) 0.667 (0.021) 0.320 (0.012) 0.728 (0.054) 0.663 (0.020)

DBGD-DSP 0.465 (0.024)(+0.43%) 0.668 (0.023)(+0.15%) 0.327 (0.011)(+2.19%) 0.734 (0.052)(+0.82%) 0.656 (0.013)(-1.06%)

MGD 0.426 (0.019) 0.664 (0.016) 0.321 (0.003) 0.740 (0.048) 0.703 (0.010)

MGD-DSP 0.467 (0.021)(+9.62%) 0.684 (0.017)(+3.01%) 0.331 (0.005)(+3.12%) 0.744 (0.053)(+0.54%) 0.714 (0.006)(+1.56%)
NSGD 0.473 (0.022) 0.676 (0.024) 0.389 (0.013) 0.732 (0.053) 0.686 (0.008)

NSGD-DSP 0.478 (0.020)(+1.06%) 0.683 (0.026)(+1.04%) 0.376 (0.014)(-3.34%) 0.788 (0.006)(+7.65%) 0.711 (0.001)(+3.64%)

Informational

DBGD 0.410 (0.034) 0.641 (0.031) 0.294 (0.022) 0.699 (0.063) 0.623 (0.037)

DBGD-DSP 0.427 (0.027)(+4.15%) 0.632 (0.031)(-1.4%) 0.309 (0.011)(+32.65%) 0.692 (0.062)(-1.00%) 0.63 (0.030)(1.12%)

MGD 0.406 (0.020) 0.651 (0.020) 0.317 (0.003) 0.726 (0.050) 0.668 (0.044)

MGD-DSP 0.444 (0.025)(+0.44%) 0.669 (0.018)(+0.67%) 0.325 (0.004)(+0.33%) 0.738 (0.054)(+0.74%) 0.701 (0.005)(+4.94%)
NSGD 0.469 (0.018) 0.674 (0.023) 0.360 (0.013) 0.733 (0.056) 0.663 (0.015)

NSGD-DSP 0.466 (0.019)(-0.64%) 0.668 (0.026)(-0.89%) 0.340 (0.018)(-5.56%) 0.789 (0.013)(+7.64%) 0.685 (0.004)(+3.32%)

algorithm on MSLR-WEB10K dataset. Similar observations were

obtained on other datasets, but due to space limit we have to omit

those detailed results. We report the online and offline performance

by varying λ from 0 (which is equivalent to the original MGD algo-

rithm) and 1 (which is MGD-DSP) in Figure 3 (a) and (b). We can

clearly observe a trend of increasing online performance over all

three click models when we increase λ, i.e., trust more on the pro-

jected directionдt for model update. This confirms the effectiveness

of the projected direction дt within document space comparing

with the unrectified direction ut from the entire parameter space.

The offline performance is generally robust to the setting of λ for

navigational and information click models. This is expected since
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both MGD and MGD-DSP are unbiased and will eventually con-

verge to similar offline performance after sufficiently large number

of iterations (we had 10,000 iterations in our experiments).

In the second experiment, we trained an offline LambdaRank

model [1] using the complete annotated relevance labels in the large-

scale MSLR-WEB10K dataset. Then given this w∗
, we compared

cosine similarity between the online estimated model parameters

with and without DSP in each iteration using MGD as the baseline.

We show the result of first 5,000 iterations. In Figure 3 (c) we can

observe that MGD-DSP converges faster and better to w∗
than

MGD. This suggests the rectified gradient is more effective than the

original one.We also comparedwith an oracle algorithm that knows

the ground-truth examined documents, denoted as DSP-GT, to

validate the effectiveness of our approximated document space. We

show the result on DBGD and MGD under the perfect click model

in Figure 3(d). We notice that oracle algorithms performed similar

to our proposed algorithm with an approximated document space,

which confirms the effectiveness of the approximation heuristics.

To answer the third evaluation question, we compare different

hyper-parameters used for constructing the document space on

MSLR-WEB10K dataset. We vary k from 0 to 7 and report the result

in Figure4 (a). We notice that for navigational and informational

click models, a relatively small k achieved the best performance,

i.e., k = 3. This corresponds to the observation that users do not

continue to examine many documents after their last click under

these two click models. However, under perfect click model the

models’ performance increases with a larger k . This aligns with
the conclusions from our discussion in Section 4.2 that under the

perfect click model, we need to set a much larger k to accurately

construct the document space and guarantee an unbiased gradient

estimate.

In Figure 4(b), we vary r . As we discussed in Section 3.5, we are

motivated to add recently examined documents to compensate for

potentially overlooked examined documents in the current query.

The effect of different choices of r is more noticeable under the

perfect click model. This echoes our analysis above that under

perfect click model some examined documents may be overlooked

when k is not large enough. Thus correctly setting up r could reduce
the bias in document space construction and compensate the final

performance. From the result figure, we notice that setting r = 20

provides the best result. Under navigational and informational click

models, the algorithm is generally robust to the choice of r . This
is because the approximations of examined documents are already

accurate with a reasonable setting of k .

5 CONCLUSION
In this paper, we propose and develop the Document Space Projec-

tion (DSP) method for reducing variance in gradient estimation and

improving online learning to rank performance. The key insight of

DSP is to recognize that the interleaved test only reveals the projec-

tion of true gradient on the spanned space of examined documents.

Including anything beyond this space for model update only intro-

duces noise. Thus our method projects the selected model update

direction back to the document space to reduce its variance. We

proved that DSPmaintains an unbiased gradient estimate, and it can

substantially improve the regret bound for DBGD-style algorithms

via the reduced variance. Through our extensive experiments, we

found that DSP is able to provide statistically significant improve-

ments to several state-of-the-art OL2R models, both in terms of

variance reduction and overall performance, especially when the

number of ranking features is large.

Currently, we are using a heuristic method to construct the docu-

ment space. However, we did observe that the performance of DSP

varies under different click models for simulated user click feedback,

i.e., different underlying examination behaviors. As for our future

work, we plan to incorporate different click modeling solutions for

more accurate document space construction. It would also be mean-

ingful to study how to perform document space based exploratory

direction generation, before the interleaved test. Exploratory di-

rection pre-selection is expected to further accelerate the gradient

exploration and improve user satisfaction during online learning,

but we also need to ensure it is unbiased.
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