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Collaborative bandit learning has become an emerging focus for personalized recommendation. It leverages user dependence for joint

model estimation and recommendation. As such online learning solutions directly learn from users, e.g., result clicks, they bring in

new challenges in privacy protection. Despite the existence of recent studies about privacy in contextual bandit algorithms, how to

efficiently protect user privacy in a collaborative bandit learning environment remains unknown.

In this paper, we develop a general solution framework to achieve differential privacy in collaborative bandit algorithms, under

the notion of global differential privacy and local differential privacy. The key idea is to inject noise in a bandit model’s sufficient

statistics (either on server side to achieve global differential privacy or client side to achieve local differential privacy) and calibrate the

noise scale with respect to the structure of collaboration among users. We study two popularly used collaborative bandit algorithms to

illustrate the application of our solution framework. Theoretical analysis proves our derived private algorithms reduce the added regret

caused by privacy-preserving mechanism compared to its linear bandits counterparts, i.e., collaboration actually helps to achieve

stronger privacy with the same amount of injected noise. We also empirically evaluate the algorithms on both synthetic and real-world

datasets to demonstrate the trade-off between privacy and utility.
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1 INTRODUCTION
Recommender system is an indispensable component to improve user engagement inmodern online information services,

such as e-commerce, online advertisement and search engines. As a reference solution for recommendation, collaborative

filtering based algorithms achieved impressive success in practice [21, 25, 31]. However, the rapid appearance of new

information and new users together with the ever-changing nature of content relevance make traditional offline learning

of collaborative filtering incompetent. This motivates the recent developments in online collaborative learning for

recommendation, especially contextual bandit based algorithms [1, 15, 23]. Collaborative bandit algorithms provide a

principled solution to the explore-exploit dilemma, and enjoy the benefits of collaborative learning paradigm, such as

alleviating the cold-start challenge. Recent advances in collaborative bandits include modeling user dependency (e.g.,

social influence) [6, 37], online user or item clustering [16, 17, 24], and estimating a low-rank structure with latent

factors (i.e., matrix factorization based collaborative filtering) [20, 35, 36].

Nevertheless, personalized recommendation is a double-edged sword: the gained utility also comes with the risk

of privacy violation. Overly personalized recommendations could be a potential source of privacy vulnerability, for

adversaries to take advantage of, e.g., infer users’ sensitive information. Real-world privacy breaches have been reported

in Amazon’s recommendation system [5] and Facebook’s advertisement system [22], where an adversary learns

considerable amount of information about a user solely based on the systems’ recommendation sequences. Comparing
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to the offline learnt models, online learning methods directly interact with sensitive user data, e.g., user clicks or

purchasing history, and timely update the models to adjust their output, which makes privacy an even more serious

concern [3, 30, 33, 34]. Realizing its importance, private online learning has recently attracted increasing attention

in the research community, with a goal to prevent the algorithm’s sequential output from revealing a user’s private

information. While there is existing research on differentially private online convex optimization [18, 33] and contextual

bandits [29, 30], private collaborative bandits have not been explored yet.

The challenges regarding the risk of privacy breach in a collaborative bandit based recommender system are unique.

In such a system, the algorithm recommends an item to a user, and the user provides feedback (e.g., click) based on

his/her true preference. The feedback (reward) is then used to update not only the model’s reward estimation on this

user, but also on other users via the imposed dependency among users. As a result, any change in one user’s feedback

promptly leads to changes in the algorithm’s output, e.g., different sequences of recommended items, potentially

for all users. This is originally designed to improve subsequent recommendations collectively across all users. But a

user’s private information could thus be inferred and revealed simply by releasing the recommendation sequence, e.g.,

extraction attack, even if this user’s feedback is kept private in the system.

In this work, we propose the first study to equip collaborative bandit algorithms with privacy guarantees, under

the notion of global differential privacy [11] and local differential privacy [10]. Under global differential privacy, a user

is assumed to trust (or say he/she has to trust) the system and provide real engagement data to the system, and the

system outputs private recommendations; while under local differential privacy, each user provides perturbed statistics

to the system and is no longer required to trust the system or the communication between him/her and system. As the

very first study on private collaborative bandits, we focus on algorithms that leverage known dependency (e.g., social

connections) among users, such as [6, 37]. Specifically, these algorithms propagate the reward collected from one user

to update his/her peers’ bandit models, according to a given and fixed user dependency structure.

One common practice to achieve privacy guarantee is to inject noise to perturb certain statistics derived from private

information in the learning process, either on the server side to achieve global differential privacy or on the client

side to achieve local differential privacy [8, 10, 11]. However, how to efficiently inject noise in the collaborative bandit

learning setting is non-trivial, because of the inherent information sharing mechanism. Specifically, to preserve privacy

in collaborative bandits, we apply the tree-based mechanism [7, 12] to add Laplace noise to the models’ statistics to

guarantee privacy on each user’s reward feedback (e.g., user clicks). We conduct sensitivity analysis, to which the key is

to calibrate the noise scale with respect to the structure of collaboration defined by the user dependency graph. Our

insight is that a careful sensitivity analysis over the collaboration structure offers the opportunity to inject minimum

amount of noise and better balance the privacy and utility trade-off. In this work, we study two popularly employed

collaborative bandit algorithms, Collaborative LinUCB (CoLin) [37] and Gang of Bandits (GOBLin) [17], as the baseline

algorithms, which represent two classic types of social network based collaboration structure. We develop their private

versions to illustrate a general solution framework for private collaborative bandit. We prove the private algorithms

reduce the added regret caused by privacy-preserving mechanism compared to its linear bandits counterparts, i.e.,

collaboration actually helps to achieve stronger privacy with the same amount of injected noise. We also empirically

evaluate the algorithms on both synthetic and real-world public datasets to validate its effectiveness and show the

improved trade-off between utility and privacy from our proposed solution framework.

2 RELATEDWORK
Collaborative Bandits. Rooted in contextual bandits [1, 4, 23], collaborative bandit algorithms are recently developed

to alleviate the cold-start problem in online recommendation. Various solutions have been introduced to enable joint

learning across users. For example, Wu et al. [37] modeled dependency among users (e.g., social influence) through a

collaborative reward generation assumption; and Cesa-Bianchi et al. [6] leveraged the structure of user dependency as

model regularization, where connected users are assumed to have similar model parameters. This type of collaborative

bandits require the knowledge of user dependency structure beforehand. Correspondingly, online clustering of bandits

studied in [17] avoided such a requirement. Li et al. [24] extended the online clustering to both users and items for

collaborative filtering. Matrix factorization based collaborative bandits have been studied in [20, 35, 36], where the

collaboration is achieved via a low rank structure over user and item latent factors. In this paper, we focus on privacy

guarantees for the first type of collaborative bandits, which take a known collaboration structure as input, and leave

the exploration of other types of collaborative bandits as our future work.
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Differential privacy. Differential privacy [11] provides a formal notion to quantify the amount of information an

adversary could obtain by observing the algorithm’s output. The common practice is to add Laplace or Gaussian noise

to the output; and the scale of noise depends on privacy budget (often denoted as ϵ) and sensitivity, which is the change

of an algorithm’s output caused by the change of input. Prior work has studied the problem of differential privacy

for offline collaborative filtering [26, 27, 38]. For example, McSherry and Mironov [27] studied differential privacy

for item-based collaborative filtering methods. Liu et al. [26] proposed a differentially private matrix factorization

method based on Bayesian posterior sampling. And Jain et al. [19] proposed a private matrix factorization method that

guarantees user-level joint differential privacy by perturbing the low-rank decomposition.

Differential privacy was first extended to an online setting for stream data in [7, 12]. Differentially private online

learning methods have been studied for online convex optimization [2, 3, 33] and bandit problems [28–30, 34]. The

key technique of these solutions is the tree-based mechanism, which was proposed in [7, 12] for privately releasing

sum statistics in stream data with finite time horizon T . Its key idea is to maintain a noisy binary tree where the T leaf

nodes are the data points, and the internal nodes in the tree stores the sum of all the leaves in its sub-tree. Each node

(which represents a partial sum) in the tree is protected with
ϵ

log(T ) -differential privacy. Since each sum statistic can

be rewritten into ⌈log(T )⌉ partial sums, composition theorem of differential privacy [27] guarantees the sequence of

output sum statistics is ϵ-differentially private.

Based on this tree-based mechanism, (globally) differentially private linear bandit was first studied in [29] with

guaranteed privacy in collected user reward feedback. Later, Shariff and Sheffet [30] studied a setting to make both

context and reward private. But they adopted a different privacy notion of joint differential privacy. In this paper, we

focus on protecting privacy on user’s reward feedback, similar as [29]. However, it is non-trivial to extend the private

linear bandits to collaborative bandits setting, where one user’s reward feedback directly contributes to other users’

model update. In other words, the change of model’s input from one user can be measured by the model’s output in

(potentially) all users. This propagation of information has to be carefully reflected in sensitivity analysis to avoid trivial

solutions. In this paper, we study both global and local differential privacy for collaborative bandits with the key idea of

calibrating the noise scale with respect to the structure of collaboration.

3 PRELIMINARIES
To prepare for the discussion of our proposed differentially private collaborative bandit solution framework, we provide

a brief overview of contextual bandits, collaborative contextual bandits, and differential privacy in this section.

3.1 Contextual Bandits
In a multi-armed bandit problem, an algorithm sequentially selects an arm at from a candidate poolA = {a1, ...,ak } at
time t , and receives the corresponding reward rat . The goal is to maximize its cumulative reward over a finite time

horizon T . In a typical contextual bandit setting, each arm a is associated with a d-dimensional context vector xa and

its expected reward is governed by a conjecture of the context vector and an unknown bandit model, parameterized

as θ∗. For example, in a linear contextual bandit setting, it is assumed that ra ∼ N (xTaθ∗,σ 2). A bandit algorithm is

evaluated by its pseudo-regret with respect to the optimal arm choice in T rounds of interactions, which is defined as,

Regret(T ) =
T∑
t=1

(
E[ra∗t ] − E[rat ]

)
(1)

where a∗t is the optimal arm to select at time t according to θ∗.
Since the bandit parameter θ∗ is unknown to learner, a contextual bandit algorithm often proceeds by maintaining an

online estimate of this parameter at each time t with the observations {(xat ′ , rat ′ )}
t−1

t ′=1
collected from past interactions.

When selecting an arm, the algorithm needs to carefully balance the need for exploitation (trusting the current estimate

of θ∗) and the need for exploration (testing new hypotheses to improve the estimation of θ∗).

3.2 Collaborative Contextual Bandits
When applied to personalized online recommendation settings, the unknown bandit model parameter θ∗ is usually
attached to each user to reflect their corresponding personalized preferences. We use θ∗u to denote the personalized

bandit model parameter for user u. In a vanilla contextual bandit setting, θ∗u for u ∈ U are independently estimated

based on the observations from the corresponding users. However, due to the existence of mutual influence among users,
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a set of isolated bandits can hardly explain all the observed reward feedback, even for a single user, which motivates

the research on collaborative contextual bandits.

In a collaborative environment, the expected reward on arm a from useru is assumed to be correlated with those from

other users. Collaborative contextual bandit algorithms aim to leverage such dependency information for improved

online model estimation and arm selection. Several different ways have been developed to utilize such dependency.

The most effective ways can be roughly summarized into the following three categories: 1). additive weighted reward

sharing [37]; 2). graph Laplacian based model regularization [6]; 3). online clustering based model sharing [16, 17, 24].

Among these three categories, the first two can be considered as explicit collaboration, as both of them require specific

input about how information is shared across users; and the last one can be considered as implicit collaboration, since
the structure of collaboration also needs to be inferred from observations by the algorithm. In this paper, we focus on

the first two types of collaborative bandit algorithms, and elaborate their details later.

3.3 Differential Privacy
For a contextual bandit algorithm that interacts with users over time horizon T , denote S = {rt }

T
t=1

as the reward

sequence, where rt is the reward feedback from user ut at time t . S ′ is considered as an adjacent neighboring sequence

of S , if it only differs from S at one point of reward ri . The output of a bandit algorithm O (which is observed by the

adversary) is the sequence of its selected arms, i.e., {at }
T
t=1

.

Definition 1 (Global Differential Privacy (DP) [11] ). A randomized mechanismM is ϵ-differentially private if
for any adjacent neighboring sequences {S, S ′} and output, P (M(S) ∈ O) ≤ eϵP (M(S ′) ∈ O).

Global differential privacy ensures the adversary observes almost the same output from a private algorithm, in

a probabilistic sense, if only one input data point is changed. The difference between the corresponding output is

characterized by ϵ . Laplace or Gaussian noise is commonly introduced to disguise the output, where the noise scale is

related to the privacy budget ϵ and the sensitivity ofM. We formally define sensitivity below.

Definition 2 (Sensitivity [11]). For any adjacent neighboring sequences {S, S ′}, global sensitivity of a function f (·)
is defined as ∆f = maxS ,S ′ | f (S) − f (S ′)|.

Global differential privacy protects sensitive user data from an adversary who has access to the algorithm’s output.

But it requires the user to send his/her authentic data to the server. Thus, the server and the communication between

user and server have to be trusted. To lift the trust needed from the user, local differential privacy (LDP) is proposed [10].

The key idea is that the privacy mechanism needs to perturb the sensitive statistics on the client side before sending it

to the server for further computation. Local differential privacy has been adopted in many real-world applications,

such as the RAPPOR system developed by Google to collect web browsing behaviour [14], and Apple provides this

privacy protection when collecting users’ usage and typing history [32]. Note that the input and output of a local

differential privacy mechanism could be different from the global differential privacy mechanism, even for the same

problem, as they impose different privacy requirements. Let Si be the reward sequence of user ui such that

⋃
i Si = S .

The formal definition of local differential privacy is provided below, where a user perturbs his/her private statistics Si
using mechanism L locally, and then send the noisy statistics to the server.

Definition 3 (Local Differential Privacy (LDP) [10] ). A randomized mechanismM is ϵ-locally differentially

private if for any input {Si , S ′i } and output O, P (M(Si ) ∈ O) ≤ eϵP
(
M(S ′i ) ∈ O

)
The key difference between LDP and DP is that a DP mechanism takes all users’ data S as input and requires the

output to be indifferentiable, while LDP mechanism takes only one user’s data Si as input and generates randomized

responses per user (locally) for downstream tasks.

4 DIFFERENTIALLY PRIVATE COLLABORATIVE BANDITS: STARTING FROM COLIN
In this work, we aim to develop a general framework to guarantee global and local differential privacy for collaborative

contextual bandits. Due to the intrinsic complexity of the problem, in this section we first develop the private version

for a state-of-the-art collaborative bandit algorithm Collaborative LinUCB (CoLin) [37] as an example. We discuss the

trade-off between privacy and utility for CoLin via rigorous regret analysis. To note, our solution framework is general
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Algorithm 1 Differentially Private CoLin (DP-CoLin)

1: Inputs: δ ∈ R+,λ ∈ [0, 1], W ∈ RN×N , ∆

2: Initialize: A1 ← λIdN×dN , b1 ← 0, ˆϑ
p
1
← A−1

1
b1,

3: for t = 1 to T do
4: Receive user ut , observe context vectors, xat ,ut ∈ R

d
and construct x̃at ,ut = Vec(X̊at ,utW

T) for ∀a ∈ A

5: Take action at = arg maxa∈A x̃Tat ,ut
ˆϑ
p
t + αt

√
x̃Tat ,utA

−1

t x̃at ,ut , where αt is given by Lemma 2.

6: Observe payoff rat ,ut
7: At+1 ← At + x̃at ,ut x̃

T
at ,ut , bt+1 ← bt + x̃at ,ut rat ,ut

8: Sample noise ηt ∼ TreeMechanism(∆, ϵ), in which ∆ = maxi L∥Wi ∥2
9: bpt+1

← bt+1 + ηt , ˆϑ
p
t+1
← A−1

t+1
bpt+1

10: end for

and can be applied to other collaborative contextual bandits algorithms. In the next section, we will provide the full

picture of our framework and show how it can be applied to another collaborative contextual bandit algorithm Gang of

Bandits (GOBLin) [17] with minimum modification in the procedures and analysis.

4.1 Global Differential Privacy for CoLin
In Collaborative LinUCB (CoLin [37]), contextual bandit models are placed on a weighted graph G = (V, E), which
encodes the affinity relationship among users. Specifically, each node vi ∈ V in G hosts a bandit model parameterized

by θi for user i; and the edges in E represent the affinity relation over pairs of users. This graph is encoded as an N ×N
stochastic matrixW, in which each elementwi j is nonnegative and proportional to the influence that user i has on user

j.W is normalized such that

∑N
i=1

wi j = 1 for j ∈ {1, ....,N }, and it is assumed to be time-invariant and known to the

learner beforehand. Accordingly, CoLin postulates an additive reward generation assumption: the expected reward

E[rat ,ut ] is not only determined by user ut ’s own preference on the arm at , but also by that from the neighbors who

have influence on ut as E[rat ,ut ] =
∑N
j=1

wut jx
T
at , jθ j ; or equivalently this can be described as,

rat ,ut ∼ N
(
Vec(X̊at ,utW

T)TVec(Θ),σ 2
)

(2)

where Vec(·) is the matrix vectorization operation, Θ is a d × N matrix consisting of parameters from all the bandits in

the graph: Θ = (θ1, . . . ,θN ), and X̊at ,ut is a d × N matrix with only the column corresponding to user ut at time t

set to xTat ,ut and all the other columns set to zero. By defining x̃at ,ut = Vec(X̊at ,utW
T) and ϑ = Vec(Θ), Eq (2) can be

re-written as rat ,ut ∼ N (x̃Tat ,utϑ,σ
2).

With such a collaborative reward generation assumption, CoLin appeals to ridge regression for estimating the

global bandit parameter matrix ϑt over all the users at time t . It has a closed-form solution
ˆϑt = A−1

t bt , in which

At = λIdN +
∑t−1

t ′=1
x̃at ′ ,ut ′ x̃

T
at ′ ,ut ′ and bt =

∑t−1

t ′=1
x̃at ′ ,ut ′ rat ′ ,ut ′ . IdN is an identity matrix and λ is the trade-off

parameter for the L2 regularization in ridge regression.

The required information sharing in CoLin brings unique challenges in protecting users’ reward feedback, i.e., the

change in one user’s reward feedback can be effectively inferred from all users’ observed recommendation sequences.

The recommendation sequences for all users thus have to be perturbed to obtain differential privacy. But instead of

directly adding noise to the model’s output, i.e., its choice of arms, we choose to add noise ηt to the sufficient statistics

bt =
∑t−1

t ′ x̃at ′ rt ′ in CoLin, where we sample ηt from a tree-based mechanism [7, 12]. Because differential privacy

is immune to post-processing [13], this ensures differential privacy on the algorithm’s output. We name this private

derivation of CoLin as (Globally) Differentially Private CoLin (DP-CoLin), and provide its details in Algorithm 1.

The key in DP-CoLin is to derive the sensitivity of CoLin. Analyzing sensitivity in a linear bandit is straightforward

[29], as the sensitivity on bt can be directly bounded by ∥xa ∥2 |ra − r ′a | ≤ L, where the reward difference is bounded by

1 and the norm of context vector is bounded by L. However, for collaborative bandits, the context vectors encode user

dependency and have a higher dimension x̃a,u ∈ RdN . A trivial bound is ∥x̃a,u ∥2 |ra − r ′a | ≤ NL; but we argue this is
not tight enough and unnecessarily introduces large noise. Below we analyze the privacy guarantee of DP-CoLin with

a tighter sensitivity bound, which calibrates the noise with respect to the structure of collaboration embedded inW.
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4.1.1 Privacy Analysis of DP-CoLin. Lemma 1 provides the sensitivity of model statistics bt in CoLin, based on which

we develop the privacy guarantee of DP-CoLin.

Lemma 1 (Sensitivity of bt in CoLin). Sensitivity of bt is ∆ = maxi L∥Wi ∥2, where Wi is the i-th row of user
dependecy matrixW and L is the norm of context vector x.

The proof of this lemma is provided in Appendix. Note that the sensitivity ∆ of CoLin is related to the structure of

W; and we discuss two extreme cases ofW to illustrate its effect on privacy protection. Consider whenW is an identity

matrix, the resulting sensitivity by our Lemma 1 is L, which is the same as in linear bandits, since there is no influence

among users. WhenW is a uniform matrix, i.e., users have homogeneous influence among each other andwi j =
1

N ,

Lemma 1 shows the sensitivity is
L√
N
. This result is significant: stronger user dependency in CoLin not only leads to

lower regret [37], but also smaller sensitivity of bt , which directly reduces the level of required noise to guarantee

privacy. This result is also intuitive: when every user has uniform influence on each other, it becomes harder to tell

whose action causes the observed change in the algorithm’s output. Less perturbation is thus needed to protect a single

user’s privacy. This improvement can hardly be obtained by directly applying existing conclusions on linear bandits.

Based on the above sensitivity analysis, we prove privacy guarantee of DP-CoLin in the following.

Theorem 1 (Privacy of DP-CoLin). Algorithm 1 with global sensitivity ∆ defined in Lemma 1 is ϵ-differentially
private.

Proof. By applying tree-based mechanism [7, 12] with privacy budget ϵ and sensitivity ∆ as shown in line 9-11 of

Algorithm 1, the perturbed statistics bpt is ϵ-differentially private. Since differential privacy is immune to post-processing

[13], this consequently makes the model parameter
ˆϑ
p
t and the sequence of recommendation {at : t ∈ [1..T ]} produced

by
ˆϑ
p
t also ϵ-differentially private. □

4.1.2 Regret Analysis of DP-CoLin. We first prove the corresponding confidence bound of parameter estimation in

DP-CoLin, i.e., αt in line 5 of Algorithm 1, which governs its upper confidence bound based arm selection for online

learning. In the following discussion, we use ∥B∥A=
√
BTAB to denote the matrix norm of vector B.

Lemma 2 (Confidence Bound of DP-CoLin). For any δ > 0, with probability at least 1 − δ , the estimation error of
bandit parameters in DP-CoLin is bounded by,

∥ ˆϑ
p
t − ϑ

∗ ∥At ≤

√
dN log

(
1+

∑t
t ′=1

∑N
j=1

w2

ut ′ j

λdN

)
−2 log(δ ) +

√
λ ∥ϑ ∗ ∥ +

∆

ϵ
logT

√
log t log

1

δ

The proof is provided in Appendix. The right-hand side of the inequality in Lemma 2 gives us αt that is used in

line 5 of Algorithm 1 for arm selection. We notice that in order to maintain a private bandit model
ˆϑ
p
t , the parameter

estimation error of DP-CoLin suffers from an additional term
∆
ϵ logT

√
log t log

1

δ comparing to that in CoLin due to

the added noise ηt . Based on Lemma 2, we have the following theorem about the upper regret bound of the DP-CoLin

algorithm, which shows the trade-off between privacy budget ϵ and regret.

Theorem 2 (Regret of DP-CoLin). With probability at least 1 − δ , the cumulative regret of DP-CoLin algorithm
satisfies,

R(T ) ≤ 2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1

w2

ut j

λdN

) (√
λ ∥ϑ ∗ ∥ +

√
dN log

(
1+

∑t
t ′=1

∑N
j=1

w2

ut ′ j

λdN

)
−2 log(δ ) +

maxi L ∥Wi ∥2

ϵ
log

1.5 T log

1

δ

)
(3)

Specifically, the added regret of DP-CoLin comparing to the CoLin is the last term, i.e.,

2 maxi L ∥Wi ∥2

ϵ
log

1.5 T log

1

δ

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1

w2

ut j

λdN

)
We illustrate the proof details in Appendix. From Theorem 2, we can find that the dependency structure plays an

important role in the added regret, and again we discuss those two extreme cases of W to explain its effect. IfW is an

identity matrix, DP-CoLin algorithm is equivalent to running N independent private LinUCB [29] for each user and the
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added regret is in the order of O
(√N
ϵ log

1.5T
√

log
T
N
√
T log

1

δ
)
. If W is a uniform matrix, the added regret is in the

order of O
(

1

ϵ log
1.5T

√
log

T
N
√
T log

1

δ
)
. It is important to note that the collaboration structure also helps reduce the

added regret by a factor of 1√
N
. In the meanwhile, the regret reduction from collaboration in the original CoLin is still

preserved in the first part of Eq (3) in DP-CoLin.

4.2 Local Differential Privacy for CoLin
Global differential privacy for CoLin requires each user to send true reward (e.g., clicks) to the server, which then

aggregates the data, injects noise, and publishes a privacy preserving output. Local differential privacy lifts the trust

on the server by asking each user to perturb his/her data locally, before any disclosure to non-trustful server or the

communication. Intuitively, this stronger privacy guarantee is at the cost of worse utility.

We present the Locally Differentially Private CoLin algorithm (LDP-CoLin) in Algorithm 2 in Appendix due to

the space limit. LDP-CoLin requires a different communication mechanism: instead of directly sending reward rat ,ut
to the server, each user u maintains bu ,t =

∑tu−1

t ′=1
x̃at ′ ,urat ′ ,u locally as shown in line 8 of Algorithm 2. Each user

perturbs their own bu ,t by a tree-based mechanism, where noise scales with per-user sensitivity ∆u (line 8-9), and then

sends it to the server. The server aggregates the received statistics to get bpt as shown in line 12, and uses it for model

estimation and subsequent recommendations. Again in LDP-CoLin the key is to analyze the sensitivity, which controls

the minimum amount of noise needed for privacy protection.

4.2.1 Privacy Analysis of LDP-CoLin. We first analyze the sensitivity ∆u of bu ,t for each user u, and then show that

Algorithm 2 is locally differentially private using this per-user sensitivity.

Lemma 3 (Sensitivity of bu ,t in CoLin). Sensitivity of bu ,t for user u is ∆u = L∥Wu ∥2.

The proof is similar to Lemma 1 and the details are provided in Appendix. The main difference is that sensitivity ∆u
is for a specific user u, which only relies on his/her dependent neighbors, i.e.,Wu .

Theorem 3 (Privacy of DP-CoLin). Randomized response bpu ,t in Algorithm 2 with sensitivity ∆u defined in Lemma 3
is ϵ-locally differentially private.

The proof is similar to DP-CoLin but works in the local setting: as shown in line 8-9 of Algorithm 2, each user u
maintains his/her own tree-based mechanism with privacy level ϵ and sensitivity ∆u locally. The local statistics bu ,t
are perturbed by the tree-based mechanism thus is ϵ-locally differentially private, and thus are

ˆϑ
p
t and the resulting

recommendation sequence.

4.2.2 Regret Analysis of LDP-CoLin. Due to local noise injection, the server’s arm selection strategy has to be revised

accordingly, which can be guided by the following lemma.

Lemma 4 (Confidence Bound of LDP-CoLin). Let ti be the number of times where user i interacts with the system
up to time t , i.e.,

∑
i ti = t . For any δ > 0, with probability at least 1 − δ , the estimation error of bandit parameters in

LDP-CoLin is bounded by,

∥ ˆϑ
p
t − ϑ

∗ ∥At ≤

√
dN log

(
1+

∑t
t ′=1

∑N
j=1

w2

ut ′ j

λdN

)
−2 log(δ ) +

√
λ ∥ϑ ∗ ∥ +

1

ϵ
log

1

δ

√√√ N∑
i=1

log ti (∆i logTi )2

The proof detail is shown in Appendix. Similarly, the right-hand side of the inequality gives us αt which is used in

line 5 of Algorithm 2. Based on it, we have the following theorem about the upper regret bound of LDP-CoLin.

Theorem 4 (Regret of LDP-CoLin). With probability at least 1 − δ , the cumulative regret of LDP-CoLin algorithm
(Algorithm 2) satisfies,

R(T ) ≤ 2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1

w2

ut j

λdN

) (√
λ ∥ϑ ∗ ∥ +

√
dN log

(
1+

∑t
t ′=1

∑N
j=1

w2

ut ′ j

λdN

)
−2 log(δ ) +

1

ϵ
log

1

δ

√√√ N∑
i=1

∥Wi ∥2 log
3 Ti

)
(4)

Specifically, the added regret of LDP-CoLin comparing to the non-private CoLin is the last term.
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Due to space limit, we omit the details of this proof. Note that Theorem 4 is in a general form in which we do not

make any assumption about the users’ arriving frequency or order. To better illustrate the added regret, we discuss a

special case where the frequency of each user interacting with the system is the same, i.e., Ti =
T
N . The added regret

can thus be simplified as,

2

ϵ
log

1.5 T
N

log

1

δ

√√√ N∑
i=1

∥Wi ∥2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1

w2

ut j

λdN

)
.

Consider the best case scenario whereW is a uniformmatrix, e.g., maximum collaboration, the added regret in LDP-CoLin

is in the order ofO
(√

N
ϵ log

2 T
N 2

√
T log

1

δ

)
, while DP-CoLin only has the added regret ofO

(
1

ϵ log
1.5T

√
log

T
N 2

√
T log

1

δ

)
.

In fact, in both cases of the illustrative dependency structure, e.g., no collaboration and uniform collaboration, the

added regret of LDP-CoLin is roughly

√
N -times larger compared with DP-CoLin’s, and increases when the number of

users grows. This is the inevitable cost to protect privacy in the local (user) level. We verified this relationship between

the number of users and regret in our empirical evaluations later as well.

5 GENERAL FRAMEWORK AND APPLICATION TO GOBLIN
5.1 A General Framework for Differentially Private Collaborative Bandits
Although having different ways of realizing user dependency, the estimation of user preferenceϑ in a collaborative bandit

algorithm can be unified by following:
ˆϑt = A−1

t bt , with At = λI+
∑t−1

t ′=1
x̃at ′ ,ut ′ x̃

T
at ′ ,ut ′ and bt =

∑t−1

t ′=1
x̃at ′ ,ut ′ rat ′ ,ut ′ .

While the matrix At and vector bt take the same form as that in CoLin, the projected feature vector x̃at ,ut ∈ R
dN

takes

different forms in different collaborative bandit algorithms, because of their unique ways of user dependency modeling.

As discussed in previous section, CoLin [37] enables additive weighted reward sharing through projected feature vector

x̃at ,ut = Vec(X̊at ,utW
T) . As another example, GOBLin [6] encodes collaboration through graph regularization in the

projected feature vector x̃at ,ut = G−1/2
⊗ Vec(X̊at ,ut ), where G = Id + L, L is the graph Laplacian of the network and

G⊗ = G ⊗ I is the Kronecker product between two matrices G and Id .
We now describe our general framework for equipping collaborative bandit algorithms with differential privacy. The

first key step is to add noise ηt to the sufficient statistics bt at each time t . Since bt can be treated as a sum statistic,

we sample the noise ηt from a tree-based mechanism [7, 12] based on Laplace noise to avoid adding unnecessary

noise. However, it is non-trivial to decide the scale (variance) of ηt , where the scale is proportional to the sensitivity

of the private statistics bt . In a collaborative learning framework, the challenge comes from the information sharing

in collaborative learning, i.e., the change in one user’s reward feedback promptly leads to changes in all dependent

users’ observed recommendation sequences. The trivial sensitivity analysis over bt in private linear bandits results in a

bound of NL and is unnecessarily large. To reduce the amount of noise, our key insight is to conduct tight sensitivity

analysis over bt with respect to the structure of collaboration. Similar to Lemma 1 of DP-CoLin, the tight sensitivity

analysis in a private collaborative bandit algorithm makes it possible to inject less noise to guarantee same privacy level

comparing to private LinUCB. The significance of this framework lies in that collaboration helps to achieve stronger
privacy with the same amount of injected noise. The second key step is to derive the corresponding confidence bound

for exploration considering the existence of the Laplace noise in the model (similar to Lemma 2). After the two steps,

we obtain a private collaborative bandit algorithm and can analyze its privacy-utility trade-off (similar to Theorem 2).

5.2 Global Differential Privacy for GOBLin
We now show that our solution framework can be easily extended to another state-of-the-art collaborative bandit

solution GOBLin [6]. Due to space limit and similarity between GOBLin and CoLin, we do not list the complete algorithm

of DP-GOBLin.

In a nutshell, GOBLin models dependency among users by requiring connected users in a network to have similar

bandit parameters via a graph Laplacian based model regularization. Specifically, the projected feature vectors x̃at ,ut =
G−1/2
⊗ Vec(X̊at ,ut ) and G = Id + L. L is the graph Laplacian and Id is a d × d identity matrix. The parameter

ˆϑ , matrix

At and vector bt take the same form as that in CoLin. To realize the first step of our framework, we add noise ηt to
bt =

∑t−1

t ′=1
x̃at ′ rt ′ to achieve global differential privacy. The noise ηt is sampled from a tree-based mechanism and the

scale depends on the privacy budget ϵ and sensitivity ∆ of GOBLin. And to realize the second step of our framework,
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we can derive the confidence bound αt of DP-CoLin as

αt =

√
log

|AT |
δ
+ L(θ1, . . . , θN ) +

maxi L ∥G
−1/2

i ∥2

ϵ
log

1.5 T log

1

δ
(5)

where L(θ1, . . . ,θN ) =
∑N
i=1
∥θi ∥2 +

∑
(i , j)∈E ∥θi − θ j ∥2 and |AT | is the determinate of matrix AT .

We now show that our analysis for DP-CoLin can be seamlessly generalized to DP-GOBLin.

Lemma 5 (Sensitivity of bt in GOBLin). Sensitivity of bt is ∆ = maxi L∥G
−1/2

i ∥2, where G
−1/2

i is the i-th row of the
square root of user dependency G’s graph Laplacian and L is the bound of context vector x’s norm.

Proof details of this lemma are provided in the appendix. Before we study the relationship between sensitivity

∆ and the structure of G, we first rewrite the sensitivity as ∆ = maxi L∥G
−1/2

i ∥2 = maxi L
√
G−1

ii , which is easier to

perceive. We again use two extreme cases to explain the derived sensitivity. When G is an identity matrix, i.e., users

are independent and disconnected, the graph Laplacian is a zero matrix, G−1

ii = 1, and the sensitivity ∆ is L. When the

graph is fully connected, we have Gii = N and Gi j = −1 for ∀i, j ∈ [1..N ], i , j. Then its inverse is

G−1 =
1

N + 1


2 1 . . . 1

1 2 . . . 1

.

.

.
.
.
.

. . .
.
.
.

1 1 . . . 2


,

and the sensitivity ∆ is
2L√
N+1

. Here again we observe that stronger user connectivity leads to smaller sensitivity of bt .
Based on this analysis, we prove the following privacy guarantee of DP-GOBLin.

Theorem 5 (Privacy). DP-GOBLin with global sensitivity ∆ defined in Lemma 5 is ϵ-differentially private.

The proof is similar as the privacy theorem in DP-CoLin using post-processing invariant property of differential

privacy, and we omit the proof details. Correspondingly, we have the following theorem about the upper regret bound

of the DP-GOBLin algorithm.

Theorem 6 (Regret of DP-GOBLin). With probability at least 1 − δ , the cumulative regret of DP-GOBLin algorithm
satisfies,

R(T ) ≤2

√
T (1 + L2) log |AT |

(√
log

|AT |
δ
+ L(θ1, . . . , θN ) +

maxi L ∥G
−1/2

i ∥2

ϵ
log

1.5 T log

1

δ

)
(6)

Specifically, the added regret of DP-GOBLin comparing to the non-private GOBLin is the last term in Eq (6). Similarly

as in DP-CoLin, the structure of collaboration, specified by G, greatly affects the regret bound in terms of ∥G−1/2

i ∥2 and

AT . For example, larger regret reduction is expected when users are more closely related. Due to space limit, we omit

the detailed results here.

5.3 Local Differential Privacy for GOBLin

Similar to LDP-CoLin, LDP-GOBLin works in the local setting where each user u maintains bu ,t =
∑tu−1

t ′=1
x̃at ′ ,urat ′ ,u

locally and perturbs it by a tree-based mechanism with noise scales by per-user sensitivity ∆u of GOBLin. Below we

first show its local privacy guarantee, and then analyze the trade-off between privacy and regret.

Lemma 6 (Sensitivity of bu ,t in GOBLin). Sensitivity of bu ,t for user u is ∆u = L∥G−1/2
u ∥2.

Theorem 7 (Privacy of LDP-GOBLin.). Randomized response bpu ,t in LDP-GOBLin with sensitivity ∆u defined in
Lemma 6 is ϵ-locally differentially private.

Theorem 8 (Regret of LDP-GOBLin). With probability at least 1−δ , the cumulative regret of LDP-GOBLin algorithm
satisfies,

R(T ) ≤2

√
T (1 + L2) log |AT |

(√
log

|AT |
δ
+ L(θ1, . . . , θN ) +

1

ϵ
log

1

δ

√√√ N∑
i=1

∥G−1/2

i ∥2 log
3 Ti

)
(7)

where L(θ1, . . . ,θN ) =
∑N
i=1
∥θi ∥2 +

∑
(i , j)∈E ∥θi − θ j ∥2.



RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Wang, et al.

Specifically, the added regret of LDP-GOBLin comparing to the non-private GOBLin is the last term. Similar to the

discussion of LDP-CoLin, we can also compare DP-GOBLin and LDP-GOBLin in the scenario where each user interacts

with the system at the same frequency. And the conclusion is also similar: in those two extreme cases, i.e., totally

isolated or related users, the added regret of LDP-GOBLin is approximately

√
N -times larger than DP-GOBLin. This

again illustrates the required cost for stronger privacy guarantee.

6 EXPERIMENT
We performed empirical evaluations of our developed private collaborative bandit algorithms against several baseline

algorithms including the non-private collaborative bandit algorithms CoLin [37] and GOBLin [6], non-private LinUCB

[23] and private LinUCB [29]. The datasets include a synthetic dataset from simulation, and two real-world datasets for

music recommendation and bookmark recommendation.

6.1 Evaluation Datasets
• Synthetic dataset. To build a synthetic dataset, we follow the settings in [6, 37] to simulate a collaborative online

recommendation environment. Specifically, we generate N users, each of which is associated with a d-dimensional

parameter vector θ∗, i.e., Θ∗ = (θ∗
1
, . . . ,θ∗N ). Each dimension of θ∗i is drawn from a uniform distribution U (0, 1) and

normalized to ∥θ∗i ∥2 = 1. Θ∗ is treated as the ground-truth bandit parameters for reward generation, and they are

withheld from bandit algorithms. We construct the golden relational stochastic matrix W for the graph of users by

definingwi j ∝ ⟨θ∗i ,θ
∗
j ⟩. We delete the edges wherewi j is smaller than a predefined threshold, and get the final user

graph G by normalizing each column of W by its L1 norm. Note that since wi j is generated proportionally to the

similarity between θ∗i and θ∗j , the resulting graph naturally satisfies the collaborative assumption in GOBLin [6], i.e.,

connected users share similar θ∗. The resulting user graph G represented by the relational matrixW are disclosed to

the bandit algorithms. In the end, we generate a size-K arm poolA. Each arm a inA is associated with a d-dimensional

feature vector xa , each dimension of which is also drawn fromU (0, 1). We normalize xa by its L2 norm.

To simulate the collaborative reward generation process among users, we compute the reward of arm a for user i at

time t as rat ,i = Vec(X̊at ,iW
T)TVec(Θ∗)+γt following Eq (2), where γt ∼ N (0,σ 2). To increase the learning complexity,

at each time t , our simulator only discloses a subset of arms in A to the learning algorithms, e.g., randomly select 10

arms from A without replacement. In simulation, based on the known bandit parameters Θ∗, the optimal arm a∗t ,i
and the corresponding reward ra∗t ,i for each user i at time t can be explicitly computed. In our experiment, we set the

number of users N = 10 and size of arm pool K = 1, 000. We run T = 30, 000 iterations and interact with users evenly,

which means we serve each user i in total Ti = 3, 000 iterations.

• LastFM and Delicious datasets The LastFM dataset is extracted from the music streaming service Last.fm, and the

Delicious dataset is extracted from the social bookmark sharing service Delicious. The two datasets are created by the

HetRec 2011 workshop with the goal of investigating the usage of heterogeneous information in recommender systems

1
. The LastFM dataset contains 1,892 users and 17,632 items (artists). The Delicious dataset contains 1,861 users and

69,226 items (URLs). To make these two datasets suitable for evaluating collaborative contextual bandit algorithms,

necessary pre-processing is needed. We followed the same pre-processing steps and experiment settings in [6, 37]. To

make this paper self-explanatory, we provide a brief description about the pre-processing steps on the two datasets.

More details of the pre-processing can be found in [6, 37].

Reward: On LastFM dataset, information about “listened artists” of each user is used to create reward for the bandit

algorithms: if a user listened to an artist at least once, the reward is 1; otherwise 0. On Delicious dataset, the reward for

bookmarked URLs is set to 1; otherwise 0.

Context features and candidate arms: On both datasets, all tags associated with a particular item are used to create

a TF-IDF feature vector, which uniquely represents the content of that item. PCA is used to reduce the dimensionality

of the feature vectors to d = 25. For a particular user i , we generate the candidate arm pool with size K = 25 by first

selecting one item from those non-zero reward items in user i based on the observations in the dataset, and then

randomly selecting the other 24 from those zero-reward items for user i .
User relation information: Both datasets contain users’ social network graph, which makes them a suitable testbed

for collaborative bandit algorithms. User relation graph is directly extracted from the available social network in the

1
Datasets and their full description is available at http://grouplens.org/datasets/hetrec-2011
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Fig. 1. Experimental results on synthetic dataset.

datasets. In order to make the graph denser and the algorithms computationally feasible, we used graph-cut [9] to cluster

users into 100 clusters. Users in the same cluster are assumed to have the same bandit model. After user clustering, a

weighted graph can be generated: the nodes are the clusters from the original graph; and the edges between different

clusters are weighted by the number of inter-cluster edges in the original graph. Then the relational matrixW in CoLin

is obtained by settingwi j ∝ c(i, j), where c(i, j) is the number of edges between cluster i and j.

6.2 Experiment Results
•Regret comparison. On the synthetic dataset, cumulative regret is used to evaluate the performance of the compared

algorithms. In the real-world datasets, since we do not have an oracle policy, we instead use each learning algorithm’s

cumulative reward for evaluation. The cumulative regret (the lower the better) on the synthetic dataset and cumulative

reward (the higher the better) on real-world datasets are reported in Figure 1 (a) and Figure 2 respectively. We set the

privacy budget ϵ = 2 for all private algorithms in our experiments by default.

In both synthetic and real-world datasets, the non-private collaborative bandits performed better than their globally

and locally private counterparts, which is surely expected. We also observe that compared with the globally differentially

private collaborative bandit algorithms, i.e., DP-CoLin and DP-GOBLin, the locally differentially private algorithms have

significantly worse regret (smaller cumulative reward). This is also expected as local differential privacy is a stronger

privacy definition on the user side, and more model perturbation has to be introduced to achieve so. Specifically, as our

analysis in Section 4.2 and Section 5.3 suggested, the added regret of LDP collaborative bandit algorithms are roughly
√
N -times larger than their DP counterparts.

We also notice that DP-CoLin and DP-GOBLin performed better than DP-LinUCB in both synthetic and real-world

datasets. The improvement comes from two sources: 1) collaborative learning, which improves the convergence rates of

model parameter estimation as discussed in [6, 37]; and 2) privacy mechanism under the collaborative environment,

which adds less noise than DP-LinUCBwhen users are not all independent or disconnected. Accordingly to Figure 1 (a), it

is obvious that comparing to the regret difference between LinUCB and GOBLin or CoLin, the regret difference between

DP-LinUCB and DP-GOBLin or DP-CoLin is much larger. This confirms that the main reason of regret reduction is the

calibrated privacy mechanisms developed in this paper.

• Parameter estimation quality. To better illustrate the performance of different bandit algorithms, we also studied

their parameter estimation quality, which directly measures the algorithms’ online learning convergence. Specifically,

we reported the L2 difference between the estimated bandit parameter
ˆϑt and the ground-truth parameter ϑ∗ in Figure

1 (b). We observe that private collaborative bandit algorithms have a slower model convergence than their non-private

counterparts. Moreover, local differential privacy clearly imposes a much larger estimation error comparing to their

counterparts with global differential privacy (note that the y-axis is on a log-scale), which further confirms the required

cost to guarantee privacy in the local setting.

6.3 Detailed Algorithm-level Analysis
To better understand the trade-off between privacy and utility in collaborative bandit learning, we varied the privacy

parameter ϵ and number of users in our evaluation.

• Effect of privacy budget ϵ . In Table 1, we reported the cumulative regret of the collaborative bandit algorithms

with global and local differential privacy under different privacy parameter ϵ . We vary ϵ from 0.5 to 10. We run each
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Fig. 2. Experimental results on real-world datasets.
Table 1. Cumulative regret across different bandit algorithm under different privacy level ϵ .

ϵ 0.5 1 2 5 10

DP-LinUCB 3082.90±82.69 2683.69±89.74 1504.14±30.40 910.97±20.83 496.11±14.72

DP-CoLin 2619.56±29.44 2450.70±50.51 1327.70±23.79 884.19±23.12 297.18±6.80

DP-GOBLin 2672.56±29.13 2550.22±19.67 964.63±13.61 685.65±6.47 246.92±9.70

LDP-CoLin 3310.53±51.85 3095.10±48.97 2389.05±61.24 1795.40±31.21 938.76±26.16

LDP-GOBLin 3268.70±65.61 3004.80±75.08 2334.62±63.78 1743.57±36.40 1060.53±28.99

experiment for T = 10, 000 iterations and report the average regret of 5 repeated runs. From the results, we notice a

clear trade-off between the required privacy level ϵ and the resulting regret. Stronger privacy requirement (i.e., a smaller

ϵ) requires the privacy mechanism to introduce more noise, which directly inflates regret. This result also supports our

theoretical analysis that the added regret of the private collaborative bandit algorithms is in the order of O( 1ϵ ).
• Effect of number of users N . In Figure 1 (c), we show the cumulative regret of the collaborative bandit algorithms

with global and local differential privacy under different number of users N . We run T = 10, 000 iterations and all users

are evenly served for
T
N times. We vary N from 5 to 50. From the result we observe that the regret increases with the

number of users. By looking at the difference between the regret of non-private algorithms and their private versions,

we can notice that the added regret increases with number of users N . This also validates our theoretical analysis that

the added regret for LDP collaborative bandit algorithms is roughly

√
N times larger than their DP versions, which is

the inevitable cost to protect privacy at the local level.

7 CONCLUSION
In this work, we studied the problem of protecting global and local differential privacy for collaborative bandits. Our

solution framework allows the privacy mechanism to calibrate the noise scale with respect to the user dependency graph.

Our theoretical analysis proves the desired privacy guarantee under both settings in two well-studied collaborative

bandits. We also rigorously proved the corresponding upper regret bound of the derived private algorithms. Most

importantly, we showed the added regret caused by differential privacy mechanism is still sublinear and benefits

from the collaboration structure. Extensive experiments on both synthetic and real-world public datasets verified

the effectiveness of the private collaborative bandit algorithms, especially the improved trade-off between utility and

privacy requirement.

As the first private collaborative bandits research, we explored a specific type of collaborative bandits with explicit

knowledge of user dependency structure. In future, we plan to study privacy for other types of collaborative bandit

algorithms, such as online clustering-based bandits [17, 24] and matrix factorization based bandits [20, 35, 36]. We

also note that the lower regret bound of a DP collaborative bandit algorithm is yet unknown, and it is important to

investigate this lower bound to show the optimality of the upper bound of a private collaborative bandit algorithm.
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APPENDIX
Details of Locally Differentially Private CoLin algorithm in Section 4.2:

Algorithm 2 Locally Differentially Private CoLin (LDP-CoLin)

1: Inputs: δ ∈ R+,λ ∈ [0, 1], W ∈ RN×N , ∆1:N
2: Initialize: A1 ← λIdN×dN , bu ,1 ← 0 for ∀u, ˆϑ1 ← A−1

1
b1,

3: for t = 1 to T do
// Sever side:

4: Receive user ut , observe context vectors xat ,ut ∈ R
d
, and construct x̃at ,ut = Vec(X̊at ,utW

T) for ∀a ∈ A

5: Take action at = arg maxa∈A x̃Tat ,ut
ˆϑt + αt

√
x̃Tat ,utAt x̃at ,ut , where αt is given by Lemma 4.

// User side:
6: Observe rat ,ut
7: Update locally but ,tut +1 ← but ,tut + x̃at ,ut rat ,ut
8: Sample noise ηut ,tut ∼ TreeMechanismut (∆ut , ϵ), in which ∆ut = L∥Wut ∥2

9: Send perturbed statistics bput ,tut +1
← but ,tut +1 + ηut ,tut to server

10: tut ← tut + 1

// Server side:
11: At+1 ← At + x̃at ,ut x̃

T
at ,ut , b

p
t+1
←

∑
u bpu ,tut ,

ˆϑ
p
t+1
← A−1

t+1
bpt+1

12: end for

Proof of Lemma 1. Consider two reward sequences S1:T and S ′
1:T that only differ at time i , i.e., rai ,ui , r

′
ai ,ui and

raj ,uj = r
′
aj ,uj for ∀j , i . We use L2-sensitivity [8] to measure vector-valued output:

∆ =max

S ,S ′
∥bt − b′t ∥2 = max

S ,S ′
∥
∑
t ′

x̃at ′ ,ut ′ rat ′ ,ut ′ −
∑
t ′

x̃at ′ ,ut ′ r
′
at ′ ,ut ′ ∥2 = max

S ,S ′
∥Vec(X̊ai ,uiW

T)(rai ,ui − r
′
ai ,ui )|2

≤max

S ,S ′
∥Vec(X̊ai ,uiW

T)∥2 ≤ max

S ,S ′
∥xai ,ui ∥2∥Wi ∥2

≤max

i
L∥Wi ∥2

The first inequality holds because the reward ra for any arm a is bounded in [0, 1], and the last inequality holds because

the norm of context vector xai ,ui is bounded by L. □

Proof of Lemma 2. We decompose the estimation error into two terms, ∥ ˆϑ
p
t − ϑ∗∥At ≤ ∥

ˆϑt − ϑ∗∥At + ∥
ˆϑ
p
t −

ˆϑt ∥At ,where
ˆϑt is the model parameter of non-private CoLin, i.e.,

ˆϑt = A−1

t bt .
The first term is the estimation error of non-private CoLin, and can be directly bounded using Lemma 1 in [37]. The

second term is the estimation difference between DP-CoLin and non-private CoLin caused by privacy mechanism, and

can be bounded as follows: ∥ ˆϑ
p
t −

ˆϑt ∥At = ∥A
−1

t (b
p
t − bt )∥At = ∥A

−1

t ηt ∥At = ∥ηt ∥A−1

t
≤ ∥ηt ∥2 ≤

∆
ϵ logT

√
log t log

1

δ ,

where the last inequality is the bound of noise added by tree-mechanism from Theorem 3.6 of [7], and ∆ is the sensitivity

derived in Lemma 1. □

Proof of Theorem 2. According to the definition of regret in Eq (1), The regret of DP-CoLin at time t can be written

as,

Rt = ra∗t ,ut − rat ,ut = Vec(X̊∗utW
T)Tϑ∗ − Vec(X̊utW

T)Tϑ∗

≤ Vec(X̊∗utW
T)T ˆϑt−1 + αt ∥Vec(X̊∗utW

T)∥A−1

t−1

− Vec(X̊utW
T)Tϑ∗

≤ Vec(X̊utW
T)T ˆϑt−1 + αt ∥Vec(X̊utW

T)∥A−1

t−1

− Vec(X̊utW
T)Tϑ∗

≤ ∥Vec(X̊utW
T)∥A−1

t−1

∥ ˆϑt−1 − ϑ
∗∥At−1

+ αt ∥Vec(X̊utW
T)∥A−1

t−1

≤ 2αt ∥Vec(X̊utW
T)∥A−1

t−1
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in which αT is the upper bound of ∥ ˆϑT −ϑ
∗∥AT and it can be explicitly calculated based on Lemma 2. The first inequality

is based on the definition of confidence bound and the second inequality holds because of the UCB-type arm selection

strategy (line 6 of Algorithm 1).

The cumulative regret at time T in DP-CoLin can be bounded by,

R(T ) ≤

√√√
T

T∑
t=1

R2

t ≤

√√√
T 4α2

T

T∑
t=1

∥Vec(X̊utWT)∥2
A−1

t−1

≤

√
T 8α2

T ln

(
|AT |)
|λI|

)
≤ 2αT

√
2dNT ln

(∑T
t=1

∑N
j=1

w2

ut j

λdN
+ 1

)
where the third inequality is based on Lemma 11 in [1]. Substitute αT with the bound from Lemma 2 gives the final

result.

□

Proof of Lemma 3. Similar to the proof of Lemma 1, for user u we consider two neighbouring reward sequence

Su ,1:Tu and S ′u ,1:Tu
that only differs at time j, i.e., raj ,u = r

′
aj ,u for ∀j , i .

∆u = max

Su ,S ′u
∥bu ,t − b′u ,t ∥2 = max

Su ,S ′u
∥

tu−1∑
t ′=1

x̃at ′ ,urat ′ ,u −
tu−1∑
t ′=1

x̃at ′ ,ur
′
at ′ ,u ∥2

= max

Su ,S ′u
∥Vec(X̊ai ,uW

T)(rai ,u − r
′
ai ,u )∥2 ≤ max

Su ,S ′u
∥Vec(X̊ai ,uW

T)∥2

≤ max

Su ,S ′u
∥xai ,u ∥2∥Wi ∥2 ≤ L∥Wu ∥2

□

Proof of Lemma 4. Similar to the analysis in Lemma 2, we separate the estimation error into two terms, ∥ ˆϑ
p
t −

ϑ∗∥At ≤ ∥
ˆϑt − ϑ∗∥At + ∥

ˆϑ
p
t −

ˆϑt ∥At , where the second term is the estimation difference between LDP-CoLin

and non-private CoLin caused by local privacy mechanism. This term can be bounded as follows: ∥ ˆϑ
p
t −

ˆϑt ∥At =

∥A−1

t (b
p
t − bt )∥At = ∥A

−1

t (
∑N
i=1

ηti )∥At = ∥(
∑N
i=1

ηti )∥A−1

t
≤ ∥(

∑N
i=1

ηti )∥2 .

Since each ηti is sampled from a tree-based mechanism, and is the sum of at most log ti Laplace noise Lap(
∆i logTi

ϵ ).

To further bound the term, we use Corollary 2.9 of [7] regarding sum of independent Laplace noise and get

∥

N∑
i=1

ηti ∥2 ≤

√√√√ N∑
i=1

∑
log ti

(
∆i logTi

ϵ
log

1

δ
)2 ≤

1

ϵ
log

1

δ

√√√ N∑
i=1

log ti (∆i logTi )2

and it holds with probability at least 1 − δ . □

Details of Globally and Locally Differentially Private GOBLin in Section 5:

Proof of Lemma 5. Consider two neighbouring reward sequence S1:T and S ′
1:T that only differs at time i , i.e.,

ru , j = ru , j′ for ∀j , i .

∆ =max

S ,S ′
∥bt − b′t ∥2 = max

S ,S ′
∥
∑
t ′

x̃at ′ ,ut ′ rat ′ ,ut ′ −
∑
t ′

x̃at ′ ,ut ′ r
′
at ′ ,ut ′ ∥2

=max

S ,S ′
∥(G−1/2 ⊗ I)Vec(X̊at ,ut )(rai ,ui − r

′
ai ,ui )∥2 = max

S ,S ′
∥Vec(IX̊at ,utG

−1/2)(rai ,ui − r
′
ai ,ui )∥2

≤max

S ,S ′
∥Vec(X̊ai ,uiG

−1/2)∥2

≤max

S ,S ′
∥xai ,ui ∥2∥G

−1/2

i ∥2 ≤ max

i
L∥G−1/2

i ∥2

Where the fourth equality is based on the vector trick of Kronecker product. □
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