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ABSTRACT
Contextual bandit algorithms provide principled online learning so-
lutions to find optimal trade-offs between exploration and exploita-
tion with companion side-information. Most contextual bandit al-
gorithms simply assume the learner would have access to the en-
tire set of features, which govern the generation of payoffs from a
user to an item. However, in practice it is challenging to exhaust
all relevant features ahead of time, and oftentimes due to privacy
or sampling constraints many factors are unobservable to the algo-
rithm. Failing to model such hidden factors leads a system to make
constantly suboptimal predictions.

In this paper, we propose to learn the hidden features for contex-
tual bandit algorithms. Hidden features are explicitly introduced
in our reward generation assumption, in addition to the observable
contextual features. A scalable bandit algorithm is achieved via
coordinate descent, in which closed form solutions exist at each
iteration for both hidden features and bandit parameters. Most im-
portantly, we rigorously prove that the developed contextual bandit
algorithm achieves a sublinear upper regret bound with high prob-
ability, and a linear regret is inevitable if one fails to model such
hidden features. Extensive experimentation on both simulations
and large-scale real-world datasets verified the advantages of the
proposed algorithm compared with several state-of-the-art contex-
tual bandit algorithms and existing ad-hoc combinations between
bandit algorithms and matrix factorization methods.
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1. INTRODUCTION
Contextual bandit algorithms [3, 7, 15, 14] have become a refer-

ence solution for modern information service systems to adaptively
find good mappings between available content and users. It models
the interaction between a system and its users as a stochastic game,
and addresses the notorious explore-exploit dilemma [3, 4, 15] at a
per-user basis. In particular, a service system equipped with a con-
textual bandit algorithm sequentially selects items to serve users
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using side information about the user and item, while adapting its
selection strategy based on the immediate user feedback to max-
imize users’ long-term satisfaction. Contextual bandits are espe-
cially advantageous when the space of recommendation is large but
the payoffs are interrelated, such as content recommendation [15,
6, 26] and display advertising [8, 17].

A common practice in contextual bandits assumes the expected
payoff is determined by a conjecture of unknown bandit parameters
and given context, which is represented as a set of manually crafted
features extracted from both users and recommendation candidates
[1, 10, 15]. In other words, it assumes the stochastic game is
transparent: the features that the environment (i.e., system users)
uses to generate the payoff of each action are entirely accessible to
the learner (i.e., the bandit algorithm). This assumption is unfor-
tunately oversimplified and will introduce systematic bias during
online learning, if the observed features are insufficient to predict
the expected payoffs. Take news recommendation as an example.
Typical features for news recommendation include a news article’s
recency, topical categories, popularity, and a user’s location [15,
25]. However, some users might care more about the source of the
news: they seldom read news from unconfirmed sources, but the
trustworthiness of a news article’s source is clearly orthogonal to
the aforementioned features. If this dimension is not disclosed to
the learner, it will inevitably lead to constantly suboptimal recom-
mendations for such group of users. Arguably, it is impossible to
exhaust all relevant attributes before developing a practical recom-
mender system, and even more challenging to figure out the miss-
ing features after the system is deployed. Furthermore, in practice
there are many factors unobservable to the learner, such as gen-
der, age, location and income due to privacy constraints, but they
are crucial for accurate recommendations. As a result, enhance the
reward generation assumptions in contextual bandits and give algo-
rithm the freedom to estimate those hidden features in addition to
the observed ones become necessary and vital.

To the best of our knowledge, few work has been done in learn-
ing hidden features for contextual bandits; but the idea of hidden
feature learning has been proved in the domain of collaborative fil-
tering [22]. Most state-of-the-art collaborative filtering solutions
are based on latent factor models, which outperform traditional
content-based methods in many application scenarios [13, 5]. The
latent features are learned via a low-rank approximation of the ob-
served user-item interaction matrix. Recent developments also in-
clude observable attributes into factorization to improve the rec-
ommendation accuracy. Typical solutions include regression-based
factor models [2] and factorization machines [20]. Nevertheless,
those factorization-based models are incompetent to handle the in-
teraction between a system and its users on the fly. For example,
there is no mechanism for them to explore currently less promis-
ing items nor to capture the dynamics of users’ interests, given
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the latent factors are learned ahead of time on an isolated training
set. Besides, there is no theoretical justification of how such latent
factor models would perform in an online setting, e.g., how fast
the discrepancy between the algorithm’s choice and optimal choice
will converge or diverge over time.

Some recent empirical studies combined bandit algorithms with
factorization-based methods for online collaborative filtering [27,
12]. Basically, bandit algorithms are used to control the explo-
ration of less promising recommendations for user feedback, and
matrix factorization is applied over the incrementally constructed
user-item matrix on the fly. However, these two components are
integrated in an ad-hoc manner: both contextual and context-free
bandits have been explored on top of matrix factorization, given
they only provide an index of candidate items for feedback ac-
quisition. There is no theoretical analysis to justify whether the
combination would ensure desirable performance in a long run and
how good/bad such algorithm is against the oracle recommenda-
tions over time, i.e., regret bound analysis.

In this paper, we propose to perform hidden feature learning for
contextual bandits, with thorough regret analysis. Specifically, hid-
den features are explicitly introduced in our reward generation as-
sumption, in addition to the observable contextual features. To sim-
plify the discussion, linear dependency structure is postulated in
our reward generation assumption; but it can be readily extended
to more complicated dependency structures, e.g., generalized lin-
ear models [10]. Coordinate descent with provable exploration
bound is used to iteratively estimate the hidden features and un-
known model parameters on the fly. At each iteration, closed form
solutions exist and can be efficiently computed. Most importantly,
we rigorously prove that with proper initialization the developed
contextual bandit algorithm with hidden features can still obtain
a sublinear upper regret bound with high probability. Our analy-
sis also demonstrates that if one fails to model the hidden features
that play a role in reward generation, a linear regret is inevitable
at the worst case, and the regret growth rate depends on the vari-
ance of those latent dimensions. In addition, we also prove that
to scale up our algorithm in practice, periodic model update can
be performed and it does not change the order of resulting regret
bound. Extensive experimentations on both simulations and large-
scale real-world datasets verified the advantages of the proposed
algorithm compared with several state-of-the-art contextual bandit
algorithms and existing ad-hoc combinations of bandit algorithms
and matrix factorization methods.

2. RELATED WORK
To the best of our knowledge, no previous work has studied the

problem of hidden feature learning for contextual bandits. But there
are several lines of related work: 1) contextual bandit algorithms;
2) factorization-based latent feature learning; and 3) online collab-
orative filtering with bandits.

Contextual bandit algorithms assume the distributions of payoffs
pertaining to each arm are connected by a set of common unknown
parameters [3, 7, 15, 14, 10]. Two different types of models have
been studied in literature. In the first type of models [14, 24], at
each trial, side-information or context is given to the learner first.
The payoffs of arms depend on both side-information and index of
the arm. Thus the optimal arm changes with the context. In the
second type [3, 7, 15, 10], which we are interested in this work, the
learner is given a model that predicts the arms’ payoffs based on
the given context vectors of arms. Both linear models [9, 15] and
generalized linear models [10] have been explored to capture such
dependency relation. However, all contextual bandit algorithms as-
sume the features that govern the underlying payoff generation are
fully observable to the learner. If the payoff is also determined

by some unobservable features, as discussed in the introduction,
we can rigorously prove such algorithms suffer from linearly ac-
cumulated regret at the worst case. Our solution extends classical
contextual bandit algorithms by explicitly learning the hidden fea-
tures during online update; this reduces the linear regret back to
sublinear with respect to the total number of iterations.

The idea of learning latent features has been successfully ex-
plored in collaborative filtering through matrix factorization [13,
22]. The basic idea roots in low rank approximation of the in-
put user-item affiliation matrix. Traditional latent factor models
only take user-item pairs as input and cannot easily incorporate
additional attributes of users nor items. They are thus inept to
make predictions on new users or new items, known as cold-start
in recommendation [21]. Some recent developments include side-
information for latent factor learning [2, 11, 18] to alleviate the
cold-start challenge. Agarwal and Chen replaced traditionally used
zero-mean Gaussian distribution with a regression-based mean, such
that different types of contextual features can be effectively intro-
duced [2]. The factorization machines proposed in [20] handle ar-
bitrary orders of interactions between variables (i.e., tensor decom-
position) and naturally incorporate observable features. However,
all the aforementioned factorization-based methods take a static
view of the interactions between users and items, and therefore
are trained offline. It is computationally prohibited to update the
model in a timely fashion, and there has been little theoretical de-
velopment to justify its effectiveness in an online setting. In our
solution, the estimation confidence of both model parameters and
hidden features is used to control the explore/exploit trade-off dur-
ing online learning, and it therefore leads to a provable sub-linear
regret bound.

There are some recent developments that focus on online collab-
orative filtering with bandits. Zhao et al. studied interactive col-
laborative filtering via probabilistic matrix factorization [27]. Sev-
eral bandit algorithms are introduced to perform online item selec-
tion based on the factorization results. Kawale et al. developed a
Thompson sampling scheme for online matrix-factorization [12].
Latent features are extracted via online low-rank matrix comple-
tion, where the explore/exploit trade-off is balanced via Thompson
sampling. Nakamura developed a UCB-like strategy to perform on-
line collaborative filtering [19]. The algorithm deterministically se-
lects feedback user-item pairs using an index which depends on the
covariance matrices of the posterior distributions of both latent user
and item vectors. However, due to the ad-hoc combination between
factorization method and bandit method, little theoretical analysis
is provided in these works. Our work for the first time gives rigor-
ously proof of regret with hidden feature learning in contextual ban-
dits. We provide upper regret bounds under different conditions to
guide future research in this direction. In addition, all above meth-
ods fall into the traditional matrix factorization paradigm, i.e., no
context features are considered. Our proposed solution leverages
the observed attributes for hidden feature learning, which further
improves the estimation quality of expected payoffs.

3. METHODOLOGY
We develop a contextual bandit algorithm with hidden feature

learning. An enhanced reward generation assumption is given in
the proposed model, where the hidden features are explicitly intro-
duced in addition to the observed contextual features. Coordinate
decent is used to estimate the unknown bandit parameters and hid-
den features, and to derive the exploration strategy for online learn-
ing. We rigorously prove that under proper initialization the result
algorithm’s upper regret bound stays in sublinear with high proba-
bility. Our theoretical analysis also demonstrates that if a contex-
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tual bandit algorithm fails to model the hidden features that affect
reward generation, a linear regret is inevitable at the worst case.

In this section, we will first describe the notations and our model
assumptions about the hidden features in a contextual bandit prob-
lem, then carefully illustrate our developed bandit algorithm and
corresponding regret analysis.

3.1 Contextual Bandit with Hidden Features
In a contextual bandit problem, at each of T rounds, a learner

needs to make a choice among a finite, but possibly large, number
of arms, which correspond to the candidate item set to be presented
(such as articles in a content recommendation system). In particu-
lar, each arm is associated with certain observable side-information
that is related to the expected payoff of this arm. We denote the
arm set as A and the cardinality of A as K. Formally, a contex-
tual bandit algorithm proceeds at discrete trials t = 1, 2, 3, ..., T
as follows. At each trial t, the learner first observes a given user u
and a subset of arms from A, where each arm a is associated with
a feature vector xa ∈ Rd summarizing the side-information of arm
a at trial t. Then based on the observed payoffs in previous trials,
the learner chooses an arm at, displays it to user u, and receives
the corresponding payoff rat,u from u. The goal of the learner is
to update its arm-selection strategy with respect to the historic ob-
servations {(xat , rat,u)}Tt=1, such that after T trials its regret with
respect to the oracle arm selection strategy is minimized. In partic-
ular, the accumulated T -trail regret is defined formally as,

R(T ) =

T∑
t=1

Rt =

T∑
t=1

(ra∗t ,u − rat,u) (1)

where a∗t is the best arm to be presented to the user according to
the oracle strategy, ra∗t ,u is the corresponding payoff, and Rt is
one-step regret at trial t.

In a standard contextual bandit problem, the payoffs of each arm
with respect to different users are assumed to be governed by a con-
jecture of unknown bandit parameters and given context vector of
the arm. To simplify our discussions, linear dependency is postu-
lated, but it can be readily extended to more complicated depen-
dency structures, such as generalized linear models [10]. Specif-
ically, each user u is assumed to be associated with an unknown
preference parameter θu ∈ Rd. This preference parameter, to-
gether with the given arm’s context vector xa ∈ Rd, determine the
payoff of at by rat,u = xT

at,uθu + ηt, where the random noise ηt
is drawn from a zero-mean Gaussian distribution N(0, σ2).

As we discussed in the introduction, one important assumption
made in the above reward generation process is that the context
features xa revealed to the learner are sufficiently informative to
capture the entire reward generation process. In other words, the
stochastic game between the environment and the learner is as-
sumed to be transparent. However, this assumption is oversimpli-
fied. In many real-world applications, it is challenging to exhaust
all relevant features ahead of time, and oftentimes because of pri-
vacy or sampling constraints many important factors are unobserv-
able to the algorithm. Due to the existence of those hidden factors,
the stochastic game is no longer transparent to the learner: the op-
timal choice is made by the environment according to the whole
feature set (both observable and hidden features), while the learner
can only learn from the observed features. When these two types
of features are independent, the learner’s inconsistent knowledge
about reward generation will cause systematic bias at every step
during online learning, and eventually lead to a linearly increasing
divergency from optimality over time. This limitation motivates us
to introduce hidden feature learning into contextual bandits.

We generalize the linear contextual bandits by introducing the
concept of hidden features. We assume that in addition to the ob-

served contextual features, there is also a set of hidden features that
affect the expected payoffs. This can be formalized as,

rat,u = (xat ,vat)
T(θx

u,θ
v
u) + ηt (2)

where xat ∈ Rd and vat ∈ Rl (with ‖(xa,va)‖2 ≤ L) are the
observed and hidden features of item at, and θx

u and θv
u are the cor-

responding bandit parameters. We denote θu = (θx
u,θ

v
u) ∈ Rd+l

as the unknown preference parameters of user u (with ‖θu‖2 ≤ S).
We assume the dimension l of hidden features is known to the
learner ahead of time, and we will discuss its impact to the algo-
rithm in our regret analysis.

The reward generation assumption specified in Eq (2) differen-
tiates our bandit problem from existing ones. Because only xat
will be disclosed to the learner for arm selection, the residual be-
tween the true reward and the learner’s estimate no longer has a
zero mean (as assumed in most linear contextual bandit algorithms
[15, 1, 10]). Instead, the residual of reward estimation is constantly
shifted by vT

atθ
v
u , which is unlikely to be recovered from xat when

vat and xat are independent. This becomes the source of linearly
increased regret in conventional contextual bandits, if vat is not
properly modeled.

Due to the coupling between θu and va in the reward generation
postulated in Eq (2), we appeal to a coordinate decent algorithm
built on ridge regression to estimate the unknown bandit parame-
ter θu for each user and the unknown hidden feature va for each
item. Specifically, the objective function of ridge regression can be
written as follows,

min
θu,va

1

2

T∑
t=1

(
(xat ,vat)

Tθu−rat,u
)2
+
λ1

2
‖θu‖2+

λ2

2
‖va‖2 (3)

where λ1 and λ2 are the trade-off parameters for L2 regulariza-
tion. We should note the regularization is critical in our solution
in two folds. First, it makes the subproblems in coordinate decent
well-posed, so that we have closed form solutions for θu and va
at each iteration. Second, it helps remove the scaling indetermi-
nacy between the estimate of θu and va, and makes the q-linear
convergence rate of parameter estimation possible [23].

The closed-form estimation of θu and va with respect to Eq (3)
at trial t can be achieved by θ̂u,t = A−1

u,tbu,t and v̂a,t = C−1
a,tda,t,

in which,

Au,t = λ1I1 +

t∑
t′=1

(xat′ , v̂at′ )(xat′ , v̂at′ )
T

bu,t =

t∑
t′=1

(xat′ , v̂at′ )rat′ ,u

Ca,t = λ2I2 +

t∑
t′=1

θ̂v
u,t′ θ̂

vT
u,t′

da,t =

t∑
t′=1

θ̂v
u,t′
(
rat′ ,u − xT

at′
θ̂x
u,t′
)

I1 and I2 are two identity matrices with dimensions of (d + l) ×
(d+ l) and l × l respectively. Projection of the estimated θ̂u,t and
v̂a,t is necessary to satisfy the constraint on their L2 norms, i.e.,
‖θu‖2 ≤ S and ‖(xa,va)‖2 ≤ L.

The estimated bandit parameters and hidden features give us a
reasonable prediction of the expected payoff from user u to arm
a by r̂at,u = (xa, v̂a,t)

Tθ̂u,t. But such predicted payoff might
not be accurate when one does not have sufficient observations for
parameter estimation at an early stage. Proper exploration of less
promising items is thus necessary to balance the explore/exploit
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trade-off for long-term optimality. Upper Confidence Bound (UCB)
[3, 4] has proved to be an effective strategy, which uses the estima-
tion confidence of predicted payoffs on the selected arms for explo-
ration. In our solution, the uncertainty of reward estimation during
online update comes from two aspects: the estimation uncertainty
of true bandit parameters, i.e., ‖θ̂u,t− θ∗u‖, and that of hidden fea-
tures, i.e., ‖v̂a,t − v∗a‖. Because of the closed form solution in our
coordinate descend estimation, the confidence set of θ̂u,t and v̂a,t
can be analytically computed by the following lemma,

LEMMA 1. When the Hessian matrix of the objective function
defined in Eq (3) is positive definite at the optimizer θ∗u and v∗a,
with proper initialization, for any ε1 > 0, ε2 > 0 , and for any
δ > 0, with probability at least 1−δ, the estimation error of bandit
parameters and hidden features from coordinate descent satisfies,

‖θ̂u,t − θ∗u‖Au,t ≤
√
d ln

(λ1d+ tL2

λ1dδ

)
+
√
λ1S (4)

+
2√
λ1

(q1 + ε1)(1− (q1 + ε1)
t)

1− (q1 + ε1)

‖v̂a,t − v∗a‖Ca,t ≤
√
l ln
(λ2l + tS2

λ2lδ

)
+
√
λ2L (5)

+
2√
λ2

(q2 + ε2)(1− (q2 + ε2)
t)

1− (q2 + ε2)

in which 0 < q1 < 1 and 0 < q2 < 1.

Lemma 1 gives us a reasonably tight construction of confidence
sets for θ̂u,t and v̂a,t, which can be easily transformed to the es-
timation uncertainty of payoff r̂at,u. The detailed proof of this
lemma and derivations for the estimation uncertainty of payoff r̂at,u
can be found in the Appendix.

Based on Lemma 1, we define αut and αat as the upper bound of
‖θ̂u,t−θ∗u‖Au,t and ‖v̂a,t−v∗a‖Ca,t respectively, and design the
following arm selection strategy for our online learning,

at =argmax
a∈A

(
(xa, v̂a,t)

Tθ̂u,t + αut

√
(xa, v̂a,t)A

−1
u,t(xa, v̂a,t)

T

+ αat

√
θ̂v
u,tC

−1
a,tθ̂

vT
u,t

)
(6)

The first term in Eq (6) is the predicted payoff of arm at to user
u based on the current estimation of bandit parameters and latent
features. This estimate reflects the tendency for exploitation of cur-
rently promising arms. The second and third terms are related to
the estimation uncertainty of θu and va, which reflect the tendency
for exploration of currently less promising arms. It is easy to verify
that the exploration terms shrink when more observations become
available, such that the exploit/explore trade-off is balanced by the
payoff prediction confidence.

By comparing our arm selection strategy to those in other contex-
tual bandit algorithms, e.g., LinUCB [15] and GLM-UCB [10], we
can find that our algorithm considers not only the prediction con-
fidence of user preference parameters (the second term), but also
the confidence of learnt hidden features (the third term). Therefore
ours is a more general solution for contextual bandits: when hidden
features do not exist, i.e., ‖v∗a‖ = 0, our algorithm degenerates to
those conventional contextual bandit algorithms (since αat = 0).
Most importantly, with proper initialization of coordinate descent,
our algorithm guarantees a sublinear regret with high probability.
We rigorously prove this conclusion in Section 3.2. Besides, al-
though the UCB-like algorithm developed by Nakamura [19] also
used an index that depends on the covariance matrices of the poste-
rior distributions of both latent user and item vectors, no theoretical
regret analysis is provided in their solution.

Algorithm 1 Online learning with hLinUCB

1: Inputs: λ1, λ2 ∈ (0,+∞), l ∈ Z+

2: for t = 1 to T do
3: Receive user u
4: if user u is new then
5: initialize Au,t ← λ1I, bu,t ← 0, θ̂u,t ← 0
6: end if
7: Observe feature vectors, xa ∈ Rd
8: For ∀a ∈ A
9: if item a is new then

10: initialize Ca,t ← λ2I, da,t ← 0, v̂a,t ← 0
11: end if
12: Select action by at = argmaxa∈A

(
(xa, v̂a,t)

Tθ̂u,t +

αu
√

(xa, v̂a,t)A
−1
u,t(xa, v̂a,t)

T + αa
√

θ̂v
u,tC

−1
a,tθ̂

vT
u,t

)
13: Observe payoff rat,u from user u
14: Au,t+1 ← Au,t + (xat , v̂at,t)(xat , v̂at,t)

T

15: bu,t+1 ← bu,t + (xat , v̂at,t)rat,u
16: θ̂u,t+1 ← A−1

u,t+1bu,t+1

17: Cat,t+1 ← Cat,t + θ̂v
u,tθ̂

vT
u,t

18: dat,t+1 ← dat,t + θ̂v
u,t(rat,u − xT

at θ̂
x
u,t)

19: v̂at,t+1 ← C−1
at,t+1dat,t+1

20: Project θ̂u,t+1 and v̂at,t+1 with respect to the constraint
‖θu‖2 ≤ S and ‖(xa,va)‖2 ≤ L.

21: end for

We name this resulting bandit algorithm as Hidden LinUCB, or
hLinUCB in short, and illustrate the detailed procedure of it in Al-
gorithm 1. This algorithm has several important properties that
are worth mentioning. First, its computational complexity is linear
with respect to the number of arms and users, and is at most cubic
to the number of features (because of matrix inverse in step 16 and
19). This can be further reduced to quadratic by using the Sherman-
Morrison formula for matrix inverse, due to the special structure of
Au,t and Ca,t matrices. Second, because the exploration terms in
Eq (6) are shrinking when more observations are available, coordi-
nate descent can be performed in a mini-batch mode with adaptive
window sizes for different users and items. Specifically, instead
of updating all the parameters across users and items in every it-
eration, we can keep accumulating (Au,t,bu,t,Cat,t,dat,t), but
compute θ̂u,t = A−1

u,tbu,t and v̂at,t = C−1
at,t

dat,t with a reduced
frequency. The window size can be adaptively decided by the es-
timation confidence of θu,t and vat,t over time. We prove that
such postponed model update will not change the order of result-
ing upper regret bound, but would greatly reduce the computation
complexity of our algorithm in large-scale deployment. Last but
not least, because of the feature-based reward generation assump-
tion, our bandit algorithm does not need all arms to be played at
least once. This can be understood by the regression-based hidden
feature learning and parameter estimation in step 14 to 19 in Algo-
rithm 1, which enable information sharing across arms. Therefore,
the resulting regret bound will be only determined by the complex-
ity of observed and hidden features, rather than the number of arms.
Detailed regret analysis in the next section supports this property.

3.2 Regret Analysis
In this section, we provide detailed regret analysis of our hLin-

UCB algorithm and compare it with other conventional contextual
bandit algorithms.

According to our derivation (details can be found in the proof
of Lemma 1 in Appendix), the coordinate descent based parameter
estimation in our algorithm satisfy the following two inequalities
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and they directly contribute to the final regret of hLinUCB,

‖θ̂u,t − θ∗u‖Au,t ≤‖
t∑

t′=1

(xat′ , v̂at′ ,t′)ηt′‖A−1
u,t

+
√
λ2L (7)

+
LS√
λ1

t∑
t′=1

‖v∗at′ − v̂at′ ,t′‖2

‖v̂a,t − v∗a‖Ca,t ≤‖
t∑

t′=1

θ̂v
u,t′ηt′‖C−1

a,t
+
√
λ1S (8)

+
LS√
λ2

t∑
t′=1

‖θ∗vu − θ̂v
u,t′‖2

The first terms on the right-hand side of Eq (7) and (8) have a
sublinear bound with respect to the time index t due to the prop-
erty of self-normalized vector-valued martingales [1], since both
(xat′ , v̂at′ ,t′) and θ̂v

u,t′ have bounded L2 norms and ηt has a finite
variance. Hence the estimation quality of θu and va (and therefore
the regret of hLinUCB) depends on the two summation terms of∑t
t′=1‖v

∗
at′
− v̂at′ ,t′‖2 and

∑t
t′=1‖θ

∗v
u − θ̂v

u,t′‖2 in Eq (7) and
(8). Due to the nature of coordinate descend, the estimation of θu
and va depends on each other and is not necessarily convex. But if
the regularization parameters λ1 and λ2 are sufficiently large, the
Hessian matrix of Eq (3) will be positive definite at the optimizer.
As a result, based on the proved convergence property of alternating
least square in [23], the estimation of θv

u and va is q-linearly con-
vergent to the optimum (θv∗

u ,v∗a). More specifically, with proper
initialization, the last terms of Eq (7) and (8) are bounded by the
summation of a geometric sequence with a common ratio smaller
than one (details are provided in the Appendix), such that they are
also sublinear with respect to the time index t. These properties are
essential to prove Lemma 1, and lead to the proof of upper regret
bound of hLinUCB.

Formally, based on the Lemma 1 discussed in Section 3.1 and
our arm selection strategy defined in Eq (6), Theorem 1 gives a
tight upper regret bound of hLinUCB.

THEOREM 1. Under proper initialization of coordinate descent,
with probability at least 1− δ, the cumulated regret of Hidden Lin-
ear Bandit algorithm satisfies,

R(T ) ≤2αuT

√
2dT ln(1 +

TL2

λ1d
) + 2αaT

√
2lT ln(1 +

TS2

λ2l
)

+ 2αaT
(q2 + ε2)(1− (q2 + ε2)

T )

1− (q2 + ε2)

in which q2 and ε2 are the same as those defined in Lemma 1,
αuT and αaT are the upper bound of ‖θ̂u,t − θ∗u‖Au,t and ‖v̂a,t −
v∗a‖Ca,t , and δ is embedded in αuT and αaT . Roughly speaking,
Theorem 1 indicates that the upper regret bound of hLinUCB is
O
(√
T lnT +(1− cT )

√
T lnT

)
, in which c is a constant between

0 and 1. This regret bound is in the same order of a typical contex-
tual bandit algorithm [15, 1, 10], i.e., O

(√
T lnT

)
. The detailed

proof of this theorem is provided in the Appendix. We should note
that our regret analysis assumes proper initialization of coordinate
descent. We empirically evaluated the sensitivity of hLinUCB with
respect to the initialization in our experiments and found it was
quite robust to different initializations in practice.

It is necessary to compare the resulting regret bound of hLinUCB
to those of conventional contextual bandit algorithms so as to un-
derstand the theoretical advantage of the proposed solution. Take
LinUCB [15] as an example, since it is a typical and popularly used
linear bandit algorithm. The regret bound of LinUCB in this reward

generation environment also depends on the right-hand side of Eq
(7) and (8). The first term on the right-hand side of Eq (7) in Lin-
UCB can be bounded similarly as that in our algorithm; however,
since LinUCB does not model the hidden features (i.e., set v̂at,t
to 0), the estimation of θu in Eq (7) will always encounter a con-
stantly increasing term

∑t
t′=1‖v

∗
at′
‖2 over time. When the hidden

features are important in determining the payoffs and independent
from the observable features, such a constant is not negligible nor
recoverable, and therefore a linear upper regret bound is inevitable.
The same conclusion applies to other contextual bandit algorithms
that cannot explicitly model the hidden features.

A similar linear upper regret bound conclusion applies to our al-
gorithm when we do not know the dimension of latent features. For
example, if we set fewer dimensions in v̂a and features in v∗a are
linearly independent from each other, constant estimation error is
unavoidable. One possible solution is to increase the dimension of
learnt hidden features, which potentially require more observations
during online update. In our empirical evaluations, we investigated
the effect of the latent feature dimensions on the algorithm’s prac-
tical performance. In addition, as we discussed in Section 3.1, to
improve computational efficiency in practice, the coordinate de-
scent between θ̂u,t and v̂at,t can be performed in a mini-batch
mode without hurting the algorithm’s regret bound. It is because
of two facts: 1) the first terms on the right-hand side of Eq (7) and
(8) are sublinear to t independently from coordinate descent; 2) the
q-linear convergence property still holds whenever an update hap-
pens. For example, if the update happens in every M iterations,
we will have the q-convergence in every M steps for θu and va
estimation. It makes the term

∑T
t=1‖θ̂u,t − θ∗u‖ be bounded by

M
(q2+ε2)

(
1−(q2+ε2)

T/M
)

1−(q2+ε2)
instead. This can be similarly applied

to the summation term in αuT and αaT for controlling the arm selec-
tion. Therefore, as long asM is not too large, we can still make the
regret bound stay in the same order as that with real-time update
but considerably reduce the computational complexity.

4. EXPERIMENTS
We performed empirical evaluations of our proposed hLinUCB

algorithm against several related baseline algorithms, including: 1)
two contextual bandit algorithms: LinUCB and hybrid-LinUCB
with user features [15]; 2) three bandit-based online collaborative
filtering methods: Particle Thompson sampling for Matrix Factor-
ization (PTS) [12], UCB-probabilistic matrix factorization (UCB-
PMF) [19], and Alternating Least Square ε-greedy, which is a gen-
eralized version of linear ε-greedy introduced in [27]. Below we
provide a brief discussion of all the compared baselines.
• LinUCB: it selects an arm based on an upper confidence

bound of the estimated reward with given context vectors.
LinUCB only works with the observed features and does not
consider the hidden features.
• hybrid-LinUCB: it extends LinUCB via a hybrid feature rep-

resentation of both items and users.
• PTS: it uses Thompson Sampling for arm selection in online

probabilistic matrix factorization.
• UCB-PMF: it is an probabilistic matrix factorization based

algorithm using a UCB-like strategy to balance exploration
and exploitation during online learning.
• ALS ε-greedy: it is a generalized linear ε-greedy algorithm

considering both observed and hidden features. Alternating
Least Square (ALS) is used to estimate hidden features, and
ε is decaying over time t (set to α

t
).

We tested all the algorithms on a synthetic data set via simula-
tion, a large collection of click stream from Yahoo Today Module
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Figure 1: Analysis of regret, hidden feature dimension and parameter tuning.

dataset [15], and two real-world datasets extracted from the social
bookmarking web service Delicious and music streaming service
LastFM [7]. Extensive experiment comparisons confirmed the ne-
cessity of learning hidden features in contextual bandit algorithms.
And the experiment results also validated the theoretical analysis
of hLinUCB algorithm and other contextual bandit algorithms in
an environment with hidden features in reward generation.

4.1 Experiments on synthetic dataset
In this experiment, we compared all the online learning algo-

rithms based on simulations, and used the accumulated regret as
our performance metric in comparison.

4.1.1 Simulation Settings
In simulation, we first generate a size-K arm pool A, in which

each arm a is associated with a (d+ l)-dimensional feature vector
(xa,va). Each dimension is drawn from a set of zero-mean Gaus-
sian distributions with variances sampled from a uniform distribu-
tion U(0, 1). Principle Component Analysis (PCA) is performed
to make all the dimensions orthogonal to each other. To simulate
the reward generation with hidden features specified in Eq (2), we
use all the (d+ l)-dimensional features to compute the true reward
for each arm, while only revealing d dimension of the features (i.e.,
xa) to a learning algorithm. We then simulateN users, each of who
is associated with a (d+ l)-dimensional parameter vector θ∗u. Each
dimension of θ∗u is drawn from a uniform distribution U(0, 1). θ∗u
is treated as the ground-truth preference parameter for reward gen-
eration, and is unknown to the algorithms. To increase the learning
complexity, at each trial t, our simulator only discloses a subset
of arms in A to the learners for selection, e.g., randomly select 10
arms fromA without replacement. The ground-truth payoff ra,u is
corrupted by a Gaussian noise η = N(0, σ2) before feeding back
to the learners. In particular, at each trial t, the same set of arms
are presented to all the algorithms; and the Gaussian noise ηt is
sampled once for all those arms at trial t.

Under this simulation setting, we compared LinUCB, PTS, ALS
ε-greedy, UCB-PMF and our proposed hLinUCB algorithm. Be-
cause our simulator does not generate user features, hybrid-LinUCB
is not applicable in this experiment. In simulation, features are ran-
domly split into observable part and hidden part aprior. We fixed
the dimension d of observable features to 20, the dimension l of
hidden feature to 5, user size N to 100, the standard derivation σ
of Gaussian noise to 0.1, and the arm pool size K to 1000 in simu-
lation. We set the latent feature dimension in PTS and UCB-PMF
to 10, and that in ALS ε-greedy to 5.

4.1.2 Results & Analysis
All algorithms were executed up to 50,000 iterations in simula-

tion. Cumulated regret defined in Eq (1) is used to evaluate the
performance of different algorithms as shown in Figure 1 (a). We

first fixed αut and αat to 0.1, set hidden feature dimension l to 5,
and fix the two trade-off parameters λ1 and λ2 of L2 regularization
to 0.1 in hLinUCB.

From the cumulated regret shown in Figure 1 (a), we can clearly
notice that when the payoff is governed by the hidden features in
addition to the observed ones, LinUCB suffers from a linearly in-
creasing cumulated regret, while our hLinUCB and ALS ε-greedy
both converged quickly. This verifies our motivation of learning
hidden features in contextual bandits, and validates the conclusion
from our regret analysis that in an environment which has hidden
features in reward generation, failing to model such features will
lead to a linearly increased regret. We also observed that PTS and
UCB-PMF needed much more iterations to converge comparing to
hLinUCB. Because these two baselines cannot utilize the observed
contextual features in reward estimation, they require much more
observations to reduce reward prediction uncertainty (i.e., explore
more). This further validates the necessity of combining both ob-
served and hidden features in bandit learning. We also varied ini-
tialization of θu and va under different zero-mean Gaussian distri-
butions with the standard deviation ranging from 0.1 to 2.0. In all
cases, hLinUCB converged sublinearly and the standard deviation
of the resulting cumulated regret stayed within 10% of average cu-
mulated regret. This indicates hLinUCB is robust to initialization.

Because hLinUCB requires the dimension of hidden features as
input, we test its sensitivity to the setting of hidden dimension l
with simulation. In this experiment, the dimension of ground-truth
hidden features in the simulator is fixed to 5 and the dimension
of hidden features used in hLinUCB varies from 0 to 7. In such
a setting, LinUCB becomes a special case of hLinUCB when the
dimension of hidden features is 0. To investigate the importance
of hidden features, we tested two different ways of hidden feature
construction in our simulator: 1) we chose the top 5 features with
largest eigenvalue from PCA’s result as hidden features, i.e., we hid
the top 5 most informative features in reward generation from the
learners; 2) we hid the bottom 5 most informative features. From
the results shown in Figure 1 (b), we can reach three conclusions.
First, when the hidden features are the most informative ones, we
obtain much worse regret than that in the case of the least informa-
tive features are hidden. This explains the importance of modeling
hidden features in a bandit algorithm, especially when they are cru-
cial in reward generation. This result is also expected based on our
regret analysis. Second, the large difference between the regret of
an algorithm that does not model the hidden features (such as Lin-
UCB) and the one that models hidden features (even with wrong
dimensions) emphasizes the necessity of hidden feature learning.
Third, although our theoretical analysis predicts a linear regret in
hLinUCB if the hidden feature dimension is not accurately set, the
actual performance is much more promising. Detailed convergence
trace can be found in the embedded subplot in Figure 1 (b). The
major reason is that our analysis estimates the upper regret bound;
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when the hidden feature dimension is set close to the ground-truth,
the coefficient in front of the linear term is small and satisfactory
online learning performance is still achievable.

In addition, we also investigated the effect of exploration param-
eter αut and αat in hLinUCB, compared with LinUCB. In Figure
1 (c), each column of the bar plot illustrates a combination of αut
and αat used in hLinUCB (LinUCB uses the same setting of αut ).
The last column indexed by (αut , α

a
t ) represents the theoretical set-

tings of those two parameters computed from the algorithms’ cor-
responding regret analysis. As shown in the results, the empirically
tuned (αu, αa) yields comparable performance to the theoretical
values, and makes online computation more efficient. As a result,
in all our following experiments we will manually set αut and αat .

4.2 Experiments on Yahoo Today Module
In this experiment, we compared our hLinUCB algorithm with

all baselines on a large-scale clickstream dataset made available by
the Yahoo Webscope program1. This data set contains 45,811,883
user visits to Yahoo Today Module in a ten-day period in May 2009.
For each visit, both the user and each of the 10 candidate articles
are associated with a feature vector of six dimensions (including
a constant bias feature), constructed by a conjoint analysis with a
bilinear model [15]. Due to privacy constraints, only these features
are available but the meaning of them is unknown. This provides
us an ideal testbed to assess the value of hidden feature learning for
bandit algorithms in practice. Besides, there is no user identity in
this data set, which forbids us to associate the observations with in-
dividual users. To address this limitation, we first clustered all users
into user groups by applying k-means algorithm on the given user
features. Each observation is then assigned to its closest user group.
All algorithms were executed on these identified user groups. The
hidden feature dimension in hLinUCB and ALS ε-greedy was set
to 5, and in UCB-PMF and PTS to 10.

In this experiment, the unbiased offline evaluation protocol pro-
posed in [16] was used to compare different algorithms. Click-
through-rate (CTR), which is defined as the ratio between the num-
ber of clicks an algorithm receives and the number of recommenda-
tions it makes, was used to evaluate the performance of all bandit
algorithms. Average CTR (not the cumulated CTR) is computed
in every 2000 observations for each algorithm as the performance
metric. Following the same evaluation principle used in [15], we
normalized the resulting CTR from different algorithms by the cor-
responding logged random strategy’s CTR. We report the normal-
ized CTR results from different algorithms over 160 derived user
groups in Figure 2 (a). We also tested all algorithms with different
number of derived user groups from k-means (from 40 to 160), and
similar relative comparison results were obtained.

From Figure 2 (a) we can clearly find that hLinUCB achieved
significant performance improvement comparing to other algorithms
except PTS and UCB-PMF. Given these observed contextual fea-
tures were originally used in Yahoo’s Today Module deployment,
the significant improvement from hLinUCB over Hybrid-LinUCB
and LinUCB further supports the necessity of learning hidden fea-
tures for contextual bandits. Compared with ALS ε-greedy, which
uses a context-free exploration strategy, the estimation confidence
based exploration strategy employed in hLinUCB leads to an im-
proved balance between explore and exploit during online learn-
ing. On this dataset, hLinUCB outperformed PTS and UCB-PMF
after running over about 6 days’ observations. The good perfor-
mance of these two factorization-based methods is expected: ac-
cording to our observations in the simulation-based experiments,
the factorization-based methods need more training data to adjust
its parameters, since they cannot leverage the observed features.
1https://webscope.sandbox.yahoo.com/
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Figure 2: Average CTR-Ratio on Yahoo Dataset

10 days’ clickstream data provides them sufficient observations to
accurately estimate the parameters for better performance.

To understand how our algorithm performs comparing to a tra-
ditional factorization-based collaborative filtering method in an on-
line setting, we included a Stochastic Gradient Descent based ma-
trix factorization method with periodic model update as a new base-
line, and denote it as CF. We split the data chronologically into
training and testing sets. In the training phase, both CF and ban-
dit algorithms were fed with the first two days’ observations for
offline model estimation. In the testing phase, daily batch update
was performed for the CF baseline. All the algorithms were eval-
uated on the clicks starting from the third day. To make the figure
clear and readable, we only demonstrated the results of hLinUCB,
LinUCB, PTS and CF in Figure 2 (b). In this experiment, all the
bandit algorithms have two versions: with and without offline train-
ing. It is evident that CF with periodic model update does not work
in online testing, because it only exploits the immediately promis-
ing items from an inaccurate model for parameter estimation. In
other words, proper exploration of currently less promising items
is necessary for long-term optimality. In addition, for all the bandit
algorithms, the offline pre-trained models provide some immediate
benefit in online testing. For example, the performance of PTS and
hLinUCB boosted on the first testing day. But they all converged
to their online trained counterparts quickly afterwards. This indi-
cates online exploration alone is sufficient to guide the algorithms
to reach satisfactory performance with enough observations. Be-
sides, since we only used two days’ data for offline training and
new items for recommendation kept emerging in the logged data,
the utility of pre-trained models rapidly diminishes as more new
observations become available. This further urges us to perform
hidden feature learning in an online fashion.

4.3 Experiments on LastFM & Delicious
The LastFM dataset was extracted from the music streaming ser-

vice website Last.fm (http://www.last.fm), and the Delicious data
set was extracted from the social bookmark sharing service website
Delicious (https://delicious.com). These two datasets were created
by the Information Retrieval group at the Autonomous University
of Madrid for the HetRec 2011 workshop with the goal of investi-
gating the usage of heterogeneous information in recommendation
systems2. The LastFM dataset contains 1,892 users and 17,632
items (artists). We used the information of “listened artists” of each
user to create payoffs of recommendation candidates: if a user lis-
tened to an artist at least once, the payoff is 1, otherwise 0. The De-
licious dataset contains 1,861 users and 69,226 items (URLs). We
generated the payoffs using the information about the bookmarked
URLs for each user: the payoff is 1 if the user bookmarked a partic-
ular URL, otherwise 0. We should note that the Delicious dataset is
2Datasets and their full description is available at
http://grouplens.org/datasets/hetrec-2011
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Figure 3: Normalized reward on Delicious & LastFM datasets

much sparser than the LastFM dataset in terms of observations per
item: they contain about the same number of users, but the num-
ber of items in Delicious is almost four times larger than that in
LastFM. Therefore, these two datasets provide us complementary
evaluations of online recommendation in different scenarios.

Following the same settings as in [7], we pre-processed these two
datasets. First, we used all tags associated with a single item to cre-
ate its TF-IDF feature vector. Then we used PCA to reduce the di-
mensionality of the features. In both datasets, we only took the first
25 principle components to construct the context vectors, i.e., the
observed feature dimension d = 25. We then generated the candi-
date arm pool as follows: we fixed the size of candidate arm pool to
25; for a particular user u, we picked one item from those nonzero
payoff items according to the whole observations in the dataset, and
randomly picked the other 24 from those zero-payoff items. As a
result, there is only one relevant recommendation in each arm pool.
The latent dimension of hLinUCB and ALS ε-greedy was fixed to
5, and 10 in PTS and UCB-PMF.

We computed the cumulated reward for each algorithm for eval-
uation. To increase visibility of the demonstrated results, we nor-
malized the cumulated reward in each algorithm by a random strat-
egy’s cumulated reward, and reported the average normalized cu-
mulated reward in every 50 iterations. The experiment results are
shown in Figure 3. Since these two datasets do not have user fea-
tures, we excluded hybrid-LinUCB in this experiment.

As shown in Figure 3 (a), on Delicious dataset all algorithms
performed very similarly at the beginning of online learning due to
the sparse observations [7], and gradually ALS ε-greedy and our
hLinUCB outperformed the other methods. Among all the bandit
algorithms, PTS and UCB-PMF performed the worst, which were
almost as bad as random. This observation verified our finding in
simulation that PTS and UCB-PMF need more observations to es-
timate the hidden features for each item; when the observations are
sparse, they suffer from inaccurate estimation of hidden features
and bandit parameters. Again, due to the sparse observations many
items only appeared once in a particular user, the estimation confi-
dence based exploration strategy in hLinUCB did not lead to signif-
icant performance improvement against ALS ε-greedy, which uses
a simple context-free exploration strategy. While on the LastFM
dataset as shown in Figure 3 (b), where the observations are much
more concentrated, we can clearly observe the advantage of mod-
eling hidden features in hLinUCB against the other baselines. We
also varied the initialization of hLinUCB and the setting of hidden
feature dimensions on these two real-world datasets, and found it
is again insensitive to initialization: the standard deviations of re-
sulting cumulated regret were within 5% of the average cumulated
regret on both datasets.

Another unique advantage of hLinUCB that is worth our atten-
tion is its ability to address cold-start, a serious challenge in on-
line recommendation [21]. In hLinUCB, because the estimation of
vat,t depends on all the related users’ estimated θu,t (details can

be found in Algorithm 1), user feedback on the recommended items
is prorogated across users via the learned hidden features. As a re-
sult, users presented with overlapped items can benefit from each
other’s feedback in bandit parameter estimation. We evaluated this
collaborative effect in hLinUCB and all other bandit algorithms on
the LastFM and Delicious datasets. In this experiment, users were
randomly separated into two groups denoted as U1 and U2, and
items were also randomly split into two groups denoted as V1 and
V2. We reserved the observations in the user-item combination of
(U2, V2) as our testing set (i.e., also known as out of matrix rec-
ommendation). Then we created two training sets: one was con-
structed from the observations in the combinations of (U1, V1) and
(U2, V1), and another set is based on the observations in the combi-
nations of (U1, V1), (U2, V1) and (U1, V2). The difference between
these two training sets is: in the first training set no information is
disclosed about the items in group V2; but in the second training
set, the hidden features of items in V2 learnt from the interactions
with users inU1 will help recommend items from V2 to users inU2.
Intuitively, a bandit algorithm with explicit modeling of hidden fea-
tures should benefit from information propagation in the chain of
U2 → V1 → U1 → V2; and therefore, the recommendations in the
testing set of (U2, V2) become a warm-start.

We computed the improvement of different bandit algorithms’
cumulated reward on these two training sets (warm-start v.s., cold-
start), and reported the results in Figure 4. We can clearly notice
that the difference in LinUCB between these two training settings is
zero all the time. This is expected because in LinUCB users main-
tain their own bandit models and nothing is shared across users.
However, in hLinUCB and ALS ε-greedy that explicitly estimate
the hidden features, we can observe clear utility of information
prorogation in alleviating cold-start. The improvement was con-
siderably large at the beginning, especially on the LastFM dataset,
and then gradually converged to zero. The large improvement at
the beginning of online learning reveals the benefit of collaboration
via the learnt hidden features. Although users in U2 did not interact
with any item in V2 before, the observations in (U1, V2) served as a
bridge for information sharing. Without such information propaga-
tion, the bandit algorithms could still achieve similar performance
in the end, but it requires much more observations over time with
the cost of decreased user satisfaction. The performance improve-
ment in all bandit algorithms on Delicious dataset is not as signifi-
cant as that in LastFM, because of the data sparsity issue again: the
overlapped observations between users in U1 and U2 are four times
less than those on LastFM. This makes the learnt hidden features
for items in V2 less accurate.
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Figure 4: The effectiveness of collaboration

The above experiments unveil the source where hLinUCB im-
proves over LinUCB: the learnt hidden features help propagate ob-
servations from active users and popular items to less active users
and less popular items. To further verify this conclusion, we care-
fully investigated the experiment results in Figure 3, and found that
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more than 68.2% of active users (who are ranked at top 50% based
on the number of observations) on the LastFM dataset received im-
proved recommendations from hLinUCB, while only 20.7% from
LinUCB; and 48.9% of active users benefit from hLinUCB com-
paring to that of 31.1% from LinUCB on the Delicious dataset.

5. CONCLUSIONS
In this paper, we studied the problem of hidden feature learning

for contextual bandit algorithms. Traditional contextual bandit al-
gorithms assume the features that govern the reward generation are
entirely accessible to the learner. When some important features
are missing due to sampling or privacy constraints, systematic bias
will be introduced into online learning. As our solution, hidden fea-
tures are explicitly modeled in the proposed contextual bandit al-
gorithm. We rigorously prove that the developed bandit algorithm
with hidden features achieves a sublinear upper regret bound with
high probability; otherwise, a linear regret is inevitable. Extensive
experimental comparisons on both simulations and large-scale real-
world datasets verified the effectiveness of the proposed algorithm.

Our current solution assumes the knowledge of hidden feature’s
dimension. This is admittedly hard to achieve in practice. It is
important to explore how to determine the dimension of hidden
features during online learning. In addition, our regret analysis is
based on the assumption of proper initialization of coordinate de-
scent. It is necessary to explore other techniques or optimization
procedures for model parameter estimation and derive the corre-
sponding provable arm selection strategies.

6. ACKNOWLEDGMENTS
We thank all the anonymous reviewers for their helpful com-

ments. This project was supported by the National Science Foun-
dation under grant IIS-1553568.

7. REFERENCES
[1] Y. Abbasi-yadkori, D. Pál, and C. Szepesvári. Improved

algorithms for linear stochastic bandits. In NIPS, pages
2312–2320. 2011.

[2] D. Agarwal and B.-C. Chen. Regression-based latent factor
models. In Proceedings of the 15th ACM SIGKDD, pages
19–28. ACM, 2009.

[3] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3:397–422, 2002.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Mach. Learn.,
47(2-3):235–256, May 2002.

[5] R. M. Bell and Y. Koren. Lessons from the netflix prize
challenge. ACM SIGKDD Explorations Newsletter,
9(2):75–79, 2007.

[6] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A
contextual-bandit algorithm for mobile context-aware
recommender system. In Neural Information Processing,
pages 324–331. 2012.

[7] N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of
bandits. Proceedings of NIPS, 2013.

[8] O. Chapelle and L. Li. An empirical evaluation of thompson
sampling. In NIPS, pages 2249–2257, 2011.

[9] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual
bandits with linear payoff functions. In International
Conference on Artificial Intelligence and Statistics, pages
208–214, 2011.

[10] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári.
Parametric bandits: The generalized linear case. In NIPS,
pages 586–594, 2010.

[11] L. Hong, A. S. Doumith, and B. D. Davison.
Co-factorization machines: modeling user interests and
predicting individual decisions in twitter. In Proceedings of
the sixth ACM WSDM, pages 557–566. ACM, 2013.

[12] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and
S. Chawla. Efficient thompson sampling for online
matrix-factorization recommendation. In NIPS, pages
1297–1305, 2015.

[13] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, (8):30–37,
2009.

[14] J. Langford and T. Zhang. The epoch-greedy algorithm for
multi-armed bandits with side information. In NIPS, pages
817–824, 2008.

[15] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of 19th WWW, pages
661–670. ACM, 2010.

[16] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In Proceedings of 4th WSDM,
pages 297–306. ACM, 2011.

[17] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin.
Exploitation and exploration in a performance based
contextual advertising system. In Proceedings of 16th
SIGKDD, pages 27–36. ACM, 2010.

[18] A. K. Menon and C. Elkan. A log-linear model with latent
features for dyadic prediction. In 2010 IEEE ICDM, pages
364–373. IEEE, 2010.

[19] A. Nakamura. A ucb-like strategy of collaborative filtering.
In ACML, 2014.

[20] S. Rendle. Factorization machines with libfm. ACM
Transactions on Intelligent Systems and Technology (TIST),
3(3):57, 2012.

[21] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In
Proceedings of 25th SIGIR, pages 253–260. ACM, 2002.

[22] X. Su and T. M. Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in artificial intelligence,
2009:4, 2009.

[23] A. Uschmajew. Local convergence of the alternating least
squares algorithm for canonical tensor approximation. SIAM
Journal on Matrix Analysis and Applications,
33(2):639–652, 2012.

[24] C.-C. Wang, S. R. Kulkarni, and H. V. Poor. Bandit problems
with side observations. Automatic Control, IEEE
Transactions on, 50(3):338–355, 2005.

[25] H. Wang, A. Dong, L. Li, Y. Chang, and E. Gabrilovich.
Joint relevance and freshness learning from clickthroughs for
news search. In Proceedings of the 21st WWW, pages
579–588. ACM, 2012.

[26] Y. Yue and C. Guestrin. Linear submodular bandits and their
application to diversified retrieval. In NIPS, pages
2483–2491, 2011.

[27] X. Zhao, W. Zhang, and J. Wang. Interactive collaborative
filtering. In Proceedings of the 22nd CIKM, pages
1411–1420. ACM, 2013.

1641



APPENDIX
Due to space limit, we can only describe the proof scratch in our theoretical
analysis of hLinUCB’s upper regret bound.
Proof of Lemma 1:

PROOF. By taking the gradient of the objective function defined in Eq
(3) with respect to θ and v and applying our model assumption specified in
Eq (2), we have,

Au,t(θ̂u,t − θ∗) =
t∑

t′=1

(xat′ , v̂at′ ,t′ )
(
(v∗at′

− v̂at′ ,t′ )
Tθ∗vu

)
+

t∑
t′=1

(xat′ , v̂at′ ,t′ )ηt′ − λ1θ
∗

in which ηt′ is the Gaussian noise at time t′ in reward generation. There-
fore, we can bound the function norm of the difference between θ̂u,t and
θ∗u by,

‖θ̂u,t − θ∗u‖Au,t =‖
t∑

t′=1

(xat′ , v̂at′ )
(
(v∗at′

− v̂at′ ,t′ )
Tθ∗vu

)
+

t∑
t′=1

(xat′ , v̂at′ ,t′ )ηt′ − λ1θ
∗
u‖A−1

u,t

≤ ‖
t∑

t′=1

(xat′ , v̂at′ ,t′ )ηt′‖A−1
u,t

+
LS
√
λ1

t∑
t′=1

‖v∗at′ − v̂at′ ,t′‖2 +
√
λ1S

where the first term on the right-hand side of the inequality is bounded by
the property of self-normalized vector-valued martingales [1], because xat
and vat have finite L2 norm and ηt has a finite variance. For the second
term, if the regularization parameter λ1 is sufficiently large, the Hessian
matrix of Eq (3) is positive definite at the optimizer based on the property
of alternating least square [23]. The estimation of θu and va is thus q-
linearly convergent to the optimizer. This indicates for every ε1 > 0, we
have

‖v̂a,t+1 − v∗a‖2≤ (q1 + ε1)‖v̂a,t − v∗a‖2
where 0 < q1 < 1. As a conclusion, we have for any δ > 0, with
probability at least 1− δ,

‖θ̂u,t − θ∗u‖Au,t ≤ +
2SL2

√
λ1

(q1 + ε1)(1− (q1 + ε1)t)

1− (q1 + ε1)

+

√
d ln

(λ1d+ tL2

λ1dδ

)
+
√
λ1S

The same proof techniques apply to the proof of ‖v̂a,t − v∗a‖Ca,t

Proof of Theorem 1:
PROOF. According to the regret definition in Eq (1), the regret at time t

can be written as,

Rt =ra∗t ,u − rat,u = (xa∗t ,v
∗
a∗t

)Tθ∗u − (xat ,v
∗
at
)Tθ∗u

≤(xat , v̂at,t)Tθ̂u,t + αut ‖xat , v̂at,t‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

at,t

+ αat ‖θ∗vu − θ̂v
u,t‖C−1

a∗t ,t

− (xat ,v
∗
at,t

)Tθ∗u

=(xat , v̂t,a)
T(θ̂u,t − θ∗u) + αut ‖xat , v̂at,t‖A−1

u,t
+ αat ‖θ̂v

u,t‖C−1
at,t

+ αat ‖θ∗vu − θ̂v
u,t‖C−1

a∗t ,t

+ (v̂at,t − v∗at )
Tθ∗vu

≤‖θ̂u,t − θ∗u‖Au,t‖xat , v̂at,t‖A−1
u,t

+ αut ‖xat , v̂at,t‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

at,t
+ ‖v̂at,t − v∗at‖Cat,t

‖θ∗vu ‖C−1
at,t

+ αat ‖θ∗vu − θ̂v
u,t‖C−1

a∗t ,t

≤2αut ‖xat , v̂at,t‖A−1
u,t

+ 2αat ‖θ̂v
u,t‖C−1

at,t

+ αat ‖θ∗vu − θ̂v
u,t‖C−1

at,t
+ αat ‖θ∗vu − θ̂v

u,t‖C−1
a∗t ,t

where the first inequality is based on the following two inequalities. First,
according to the arm selection strategy if arm a is chosen at trial t, we have

(xat , v̂at,t)
Tθ̂u,t + αut ‖xat , v̂at,t‖A−1

u,t
+ αat ‖θ̂v

u,t‖C−1
at,t

≥ (xa∗t , v̂a
∗
t ,t

)Tθ̂u,t + αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

a∗t ,t

Second, using Cauchy-Schwarz inequality, we get,

(xa∗t , v̂a
∗
t ,t

)Tθ̂u,t + αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

a∗t ,t

− (xa∗t ,v
∗
a∗t

)Tθ∗u

− (xa∗t , v̂a
∗
t ,t

)Tθ∗u + (xa∗t , v̂a
∗
t ,t

)Tθ∗u − (xa∗t ,v
∗
a∗t

)Tθ∗u

=(xa∗t , v̂a
∗
t ,t

)T(θ̂u,t − θ∗u) + (0, (v̂a∗t ,t − v∗a∗t
))Tθ∗u

+ αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

a∗t ,t

≥− ‖θ̂u,t − θ∗u‖Au,t‖(xa∗t , v̂a∗t ,t)‖A−1
u,t
− ‖(v̂a∗t ,t − v∗a∗t

)‖Ca∗t ,t
‖θ∗vu ‖C−1

a∗t ,t

+ αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

a∗t ,t

≥− αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t
− αat ‖θ∗vu ‖C−1

a∗t ,t

+ αut ‖(xa∗t , v̂a∗t ,t)‖A−1
u,t

+ αat ‖θ̂v
u,t‖C−1

a∗t ,t

=− αat ‖θ∗vu − θ̂v
u,t‖C−1

a∗t ,t

in which αut is the upper bound of ‖θ̂u,t − θ∗u‖Au,t and αat is the upper
bound of ‖v̂a,t − v∗a‖Ca,t .

Putting all these together, the the accumulated regret of hLinUCB at time
T can be derived as,

R(T ) =
T∑
t=1

Rt

≤

√√√√T

T∑
t=1

4(αut )
2‖xat , v̂at,t‖2A−1

u,t

+

√√√√T

T∑
t=1

4(αut )
2‖θ̂vu,t‖2C−1

at,t

+

T∑
t=1

αat ‖θ∗vu − θ̂v
u,t‖C−1

at,t
+

T∑
t=1

αat ‖θ∗vu − θ̂v
u,t‖C−1

a∗t ,t

≤2αuT

√√√√T

T∑
t=1

‖xat , v̂at,t‖2A−1
u,t

+ 2αaT

√√√√T

T∑
t=1

‖θ̂vu,t‖2C−1
at,t

+ 2αaT
1
√
λ2

T∑
t=1

‖θ∗vu − θ̂v
u,t‖2

Based on Lemma 11 in [1] and our previous proof, the first and second
terms on the right-hand side of above inequality can be bounded by,

2αuT

√√√√T

T∑
t=1

‖xat , v̂at,t‖2A−1
u,t

+ 2αaT

√√√√T

T∑
t=1

‖θ̂vu,t‖2C−1
at,t

≤ 2αuT

√
2dT ln(1 +

det(Au,t)

det(λ1I)
) + 2αaT

√
2lT ln(1 +

det(Ca,t)

det(λ2I)
)

≤ 2αuT

√
2dT ln(1 +

TL

λ1d
) + 2αaT

√
2lT ln(1 +

TS

λ2l
)

For the third term of the upper bound in R(T ), according to the q-linear
convergence property, we have,

2αaT
1
√
λ2

T∑
t=1

‖θ∗vu − θ̂v
u,t‖2 ≤ 2αaT

S
√
λ2

T∑
t=1

(q2 + ε2)
t

≤ 2αaT
1
√
λ2

(q2 + ε2)(1− (q2 + ε2)T )

1− (q2 + ε2)
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